
FRACAS
FRAmed Channel Access Simulator

USER MANUAL

Nedo Celandroni

Erina Ferro

Francesco Potortì

CNUCE/C.N.R. Institute

Via S.Maria 36 - 56126 Pisa (Italy)

Tel. : +39-50-593207 / 312 / 203

Telex: 500371 CNUCE

Fax : +39-(0)50-904051 / 052

e-mail: {n.celandroni | e.ferro | pot}@cnuce.cnr.it

CNUCE Report C95-27

November 1995

i

TABLE OF CONTENTS

TABLE OF CONTENTS.. i

1. INTRODUCTION.. 1

2. OVERVIEW OF FRACAS.. 3

3. REQUEST ALGORITHMS... 7

3.1. queue.. 7

3.2. fodaibea (FODA/IBEA and FID/VBR protocols)... 7

3.3. feeders-drifs (FEEDERS and DRIFS protocols)... 8

4. ALLOCATION ALGORITHMS ... 9

4.1. fixed (Fixed TDMA).. 9

4.2. fodaibea (FODA/IBEA and FID/VBR protocols)... 9

4.3. DRIFS.. 10

4.4. FEEDERS.. 11

5. THE INPUT FILE.. 12

5.1. GLOBAL VARIABLES.. 12

5.2. INITER LINE.. 13

5.2.1. Equally distributed datagram allocation initer (even)................... 13

5.2.2. No datagram allocation initer (zero)... 13

5.3. REQUESTER LINE.. 13

5.3.1. Queue requester (queue).. 13

5.3.2. FID/VBR (fodaibea).. 13

5.3.3. FEEDERS and DRIFS... 14

5.4. ALLOCATOR LINE... 14

5.4.1. Fixed TDMA (fixed)... 14

5.4.2. FID/VBR (fodaibea).. 14

5.4.3. FEEDERS (feeders).. 16

5.4.4. DRIFS (drifs).. 16

5.5. STOPPER LINE.. 17

5.5.1. Elapsed time stopper (stopper).. 17

5.6. STATION DESCRIPTION.. 17

5.6.1. The station identifier (station)... 17

5.6.2. The stream allocation request (streamreq).................................... 17

5.6.3. The VBR allocation request (vbrreq).. 18

5.6.4. The maximum queue length.. 18

5.6.5. The traffic generators.. 18

5.6.5.1. Constant traffic generator (constant).............................. 19

ii

5.6.5.2. Poisson traffic generator (poisson)................................. 20

5.6.5.3. Impulsive traffic generator (impulse)............................. 20

5.6.5.4. Fractional Gaussian Noise traffic generator

(fgn) ... 21

5.6.5.5. External traffic generator (external)............................... 21

5.7. COMPUTER LINES.. 22

5.7.1. The observables... 22

5.7.2. The computers... 24

5.7.2.1. Simple statistics computer (simplestats)........................ 25

5.7.2.2. Quantile computer (quantile).. 25

5.7.2.3. Sample listing computer (listing)................................... 26

5.7.2.4. Distribution computer (categorise)................................. 26

5.7.2.5. Computer for graphing the distribution on a tty

(ttydistrib).. 27

5.7.2.6. Computer for graphing the observable versus

time on a tty (ttygraph).. 27

5.8. INPUT FILE SYNTAX... 28

REFERENCES... 30

APPENDIX... 31

An example: input file... 31

An example: FRACAS output.. 32

iii

LEGEND

a is optional.

one or more instances of a.

a|b|…|f one and only one item among a, b,…, f.

TRU Traffic Unit. Data size unit measurement.

TMU time Unit. Time unit measurement.

The traffic unit measurement is TRU/TMU.

observable any measurement on which statistics can be collected.

history the values assumed by an observable.

1

1. INTRODUCTION

FRACAS (FRAmed Channel Access Simulator) is a simulation tool for TDMA satellite

networks, which provides users with a library of satellite channel access schemes in

TDMA.

Once the network configuration has been defined, the user can choose the band

allocation policy from a set of predefined policies. Statistics on the performance of the

chosen access scheme in the conditions of the network simulated are then collected.

FRACAS is aimed at all those research centres in the field of communications via

satellite in TDMA, and to service suppliers who need support from simulative studies in

order to choose the best allocation policy and to tune up the relevant parameters.

FRACAS is useful for comparing different satellite access schemes in traffic load

conditions chosen by the user. Three classes of traffic,called datagram, stream and

VBR are considered. Datagram includes all the jitter-tolerant applications, stream

and VBR include all the real-time applications.

Datagram traffic is a connectionless type of traffic without any particular delay

requirements. It can tolerate out-of-order delivery of packets and a high jitter, but

usually it requires a low bit error rate. The delay introduced by the network(s) crossing

is not a critical constraint. However, especially on a high delay network, like the

satellite network, the end-to-end throughput of such traffic can be heavily impaired by

bit errors or packet losses that trigger retransmissions in higher level protocols.

Datagram packets delivery is not guaranteed in the sense that the datagram

transmissions may be momentarily suspended (e.g. when congestion is detected), and

that packets exceeding the system buffering capacity may be dropped. Moreover, the

delay a datagram packet experiences can occasionally be very high, in the order of

seconds.

By stream we mean connection-oriented applications characterised by a constant packet

arrival rate. These applications typically require short and fairly constant delays. They

cannot tolerate out-of-order delivery of packets, but can tolerate occasional bit errors

and dropped packets. In practice, stream traffic needs a fixed amount of bandwidth and

the satellite network should maintain a low and constant delay on the arrival of the

information. This kind of traffic is generated by applications that have constant

throughput, like voice, slow-scan TV, fixed rate video conference, measurement data

and so on. It is referred to as FBR (Fixed Bit Rate) traffic.

2

By VBR we mean Variable Bit Rate video, which is one of the most interesting and

challenging real-time applications. Constant quality VBR encoders attempt to keep the

quality of video output constant, resulting in a highly variable and bursty output bit

rate. VBR video traffic is both highly variable and delay sensitive, so transmission over

high-speed networks (for example ATM) is generally implemented by assigning peak

rate bandwidth to VBR video applications, and by using the residual bandwidth for

non-real-time traffic.

3

2. OVERVIEW OF FRACAS

FRACAS is a batch program that reads its input from one or more files and outputs the

results onto one or more files or terminals. The general syntax for invoking FRACAS is

summarised in the following screenful, which FRACAS prints when it is called with no

arguments:

usage: fracas [options] files

Where options are:

-e print all known values on stdout, skip all computations

-s print the entire source file before the computation results

-t terse - do not print headers on standard output

-v verbose - write messages showing the process of computations

At least one input file name must be specified on the command lines, but several are

accepted. The input files are individually read and elaborated by FRACAS.

The -e (emulate only) option skips all the computations on the output values, runs the

emulator and writes all observable values on the standard output. Only the packet delay

observable (tru_delay) is not printed, because it requires a computation to be evaluated.

The -e option is useful for using FRACAS as an emulator and for giving the task of

computation to some other program.

The -s (source file) option is useful when the output of FRACAS is redirected to a

file, that, at the end of the run, will contain both the source of the run and its results.

The -t (terse) option is useful when the output is redirected to a program.

The -v (verbose) option is useful for looking at the progress of the simulation.

FRACAS is a discrete time simulator. Everything in the emulation happens at intervals

of one frame, and no measure makes sense in between. In the input file, the length of a

frame is defined as an integer number of TMUs. This is useful only to have all the times

expressed in some handy time unit, but does not affect the behaviour of the simulator in

any way. For example, if a particular simulation uses a time frame 20 ms long, it is

useful to express all the times in milliseconds, by setting the time frame to 20 TMUs.

This version of FRACAS does not allow a non integer time frame to be specified.

4

Moreover, the time frame must be kept as small as possible if the packet by packet

delay has to be computed. This is because the maximum computable must fit into 16

bits (216-1=65535). In our example packet by packet delays of up to 65 seconds could

thus be computed. There is no limit on the delays if they are measured as a frame by

frame mean delay. Since all the timings are multiple of a frame, no delay shorter than

this quantization unit can be resolved. This implies, for example, that if in the real

system the delays are less than one frame long, they are rounded down to zero and

invisible to FRACAS.

In the input files keywords are used to define the network configuration, the channel

allocation policy and the statistics to be collected. The syntax is described in the

Appendix. The main entries in the input file define:

* the time length and the data size of the frame,

* the configuration of each station,

* the channel allocation policy,

* the statistics to collect,

* the duration of the simulation,

* the end keyword.

• Station Configuration

For each station the following parameters can be defined:

* maximum queue length for stream, VBR and datagram,

* stream request,

* maximum and minimum VBR request.

For each station an arbitrary number of different traffic generators can be defined.

Examples of traffic generators are:

* Constant rate,

* Periodic on-off with constant rate bursts,

* Poisson,

* Two state Markov-modulated Poisson,

* Fractional Gaussian Noise.

Additional traffic generators can be added by coding them in C language.

5

• Channel Allocation Policy

Users can choose the channel allocation policy for a simulation session. The available

policies at the time of writing include:

* Fixed TDMA

* FODA/IBEA (Fifo Ordered Demand Assignment / Information Bit Energy

Adapter)

* FID/VBR (FODA/IBEA Derived / Variable Bit Rate)

* DRIFS (Distributed allocation with Requests In Fixed Slots)

* FEEDERS (Faded Environment Effective Distributed Engineering

Redundant Signalling)

Apart from Fixed TDMA which is a well known policy, the others were studied at

CNUCE. In particular, FODA/IBEA (which has a centralised control) was developed

in the framework of the Olympus project and its validity has been confirmed by

simulative and experimental results. FODA/IBEA does not support VBR traffic.

FID/VBR is the FODA/IBEA protocol with support for VBR video traffic. DRIFS and

FEEDERS are distributed control protocols. Work on FRACAS was begun to evaluate

the performance of these last two protocols, and it is expected to grow to include other

protocols, which can be easily added by coding them in C.

• Computers

Once the allocation policy has been chosen, various statistics such as minimum,

maximum, average, variance, percentile and sample listing on the following

observables can be collected:

* input traffic

* length of the input queues

* output traffic

* unused allocation space

* frame-by-frame and packet-by-packet delay

* packets lost due to internal buffer overflow

Additional statistics on the observables listed above can be added by coding the

relevant routines in C.

6

• The end keyword

The end keyword on a line after the computers section means that the description of a

run is finished and another one follows. Therefore, an arbitrary number of runs can be

concatenated into a single file. The last file needs no end keyword. To concatenate runs

into a single file is the same as writing them in different files and listing the file names

on the FRACAS command line.

7

3. REQUEST ALGORITHMS

A requester function is called at each frame for each station. It computes the request the

station makes in that frame for each of the three kinds of traffic (stream, VBR,

datagram). All the stations in FRACAS share the same allocator, so only one allocator

needs to be specified.

3.1. queue

All the requests are equal to the length of their respective input queues. This requester

is only useful for simple tests on the behaviour of the FRACAS simulator itself.

3.2. fodaibea (FODA/IBEA and FID/VBR protocols)

This requester is supposed to be used together with the fodaibea allocator (see below).

When used together, they behave like the FODA/IBEA or FID/VBR protocols.

The stream request is equal to sreq as specified in the station definition.

The VBR request is equal to the VBR minreq or maxreq specified in the station

definition. The maxreq value is requested when the input traffic is greater than the VBR

minreq value. The input traffic is measured as the average input in a sliding window

whose length in frames is the fodaibea requester parameter vwin. The minreq value is

requested when the input traffic is less than or equal to minreq.

The datagram request is proportional to the traffic coming into the station plus the

backlog, i.e. the volume of data waiting for transmission to the satellite:

 request = H traffic + backlog

where H is a temporal constant. The input traffic is updated every dwin frames; it is

computed as the average of the input in the last dwin frames. Both H and dwin are

parameters of the requester. A datagram request in a frame can only be made if the

station has some allocation (either stream, VBR or datagram) in that frame. If not, no

datagram request is made.

8

3.3. feeders-drifs (FEEDERS and DRIFS protocols)

This requester is supposed to be used together with the feeders or the drifs allocators

(see 4.3 and 4.4). When used together, they behave like the FEEDERS or DRIFS

protocols, respectively.

The stream, VBR and datagram requests are made in the same way as the fodaibea

requester does. The only difference is that in every frame a datagram request is always

made.

9

4. ALLOCATION ALGORITHMS

An allocator is a function called at each frame. It looks for the requests that the stations

made a given number of frames before (the number depends on the allocator type), and

computes the allocations for all the stations. Only one allocator can be specified.

4.1. fixed (Fixed TDMA)

The stream traffic receives an assignment equal to the request sreq.

The VBR traffic receives an allocation equal to the max VBR request vmaxreq.

The remaining space, equal to framesize minus the sum of the stream and VBR

allocations, is evenly divided among all the stations and assigned as a datagram

allocation.

4.2. fodaibea (FODA/IBEA and FID/VBR protocols)

FODA/IBEA is a satellite access scheme for simultaneous transmissions of both stream

and datagram data. The quality of service is maintained even when the system is faded,

i.e. the transmission signal is attenuated due to bad atmospheric conditions. VBR traffic

is not supported [1,2,3].

FID/VBR is a version of FODA/IBEA modified in a such a way as to support VBR

traffic too [4, 5].

Both access schemes (FODA/IBEA and FID/VBR) have centralised control. In terms of

delay, the delay between a request and the relevant assignment is twice the round trip

time rttitme divided by frametime rounded up plus three. This accounts for all the

transmission and the processing delays.

The channel overhead is due to a traffic independent part consisting of the reference

burst, an FAS (First Access Slot) every 32 frames (by default), and some extra space

needed by the hardware. The reference burst is sent by the control station for

synchronisation and contains the assignments. The FAS is a space used by the stations

to enter the satellite network. Other overheads are traffic dependent: the only one

FRACAS considers is the burst overhead (one per frame), which is the unused space

subtracted from the total frame space every time an allocation is given to a station. The

fodaibea allocator implements FID/VBR, as a superset of FODA/IBEA. However,

10

since FRACAS has no means to change the signal quality, support for variable satellite

channel speed and coding rate is not implemented.

The stream allocation is equal to the stream request.

The VBR allocation is equal to the VBR request.

The datagram requests are organised into a ring, which is scanned to compute the

assignments. The length of the assigned transmission window is proportional to the

request in a range of values between a minimum and a maximum threshold (mindall

and maxdall). The proportionality factor is proportional to the total number of stations

in a range [allnmin; allnmax]. The complete expression for the assignment is:

bound a, b(·) ≡ max(a, min (b, ·))

assignment = bound mindall, maxdall (request · bound allnmin, allnmax (stno) / alld)

where stno is the number of stations in the system. Default values for allnmin, allnmax

and alld are 5, 50 and 100 respectively, meaning that the proportionality factor is

bounded to a range of 5% to 50% by default.

After each assignment, the datagram request is decreased by the assignment itself and

the next request is analysed, if space is still available in the frame. The first assignment

that does not fit entirely into the current frame is analysed as the first assignment in the

next frame where the rest of the computed amount is assigned.

Any space available in the frame after an entire assignment cycle, i.e. the time between

two consecutive allocations to the same station, is shared among all the active stations,

even those which had no datagram assignment in that frame.

4.3. DRIFS

This is a distributed control assignment algorithm [6]. The allocation requests are

broadcast to all the stations in the system; therefore the delay between a request and the

relevant assignment is about one round trip time plus one frame.

No reference burst is transmitted. A control slot is permanently assigned to each active

station in a position in the allocation cycle that is fixed, provided that no station enters

or leaves the system. The control slot is used to send the requests. Only stinframe slots

are accommodated in each frame, 8 by default. Therefore the allocation cycle length is

given by the number of active stations divided by stinframe (rounded up). A fixed quote

(dquote) of the request is given to each station. If the sum of the assignments is greater

11

than the length of the allocation cycle, then the assignments are compressed to fit into

the assignment cycle space, otherwise the excess space is divided among all the

stations. No assignment is less than mindall (equal to the burst overhead length bovh by

default), and maxdall is the maximum allocation, equal to half an allocation cycle by

default.

4.4. FEEDERS

This too is a distributed control assignment algorithm [6]. A reference burst is

transmitted every na frames by a master station; na is also the length of the allocation

cycle. Every station receives an allocation in every frame. The allocations are changed

only once every na frames. There is no minimum allocation, but a maximum allocation

maxdall, equal to half a frame length by default. A mechanism similar to the one used

by DRIFS is used to compute the allocations, using a fixed quote dquote of the request.

12

5. THE INPUT FILE

The input file consists of a sequence of one or more run descriptions. The run

descriptions are sequenced and separated by a line containing only the end keyword.

Putting several run descriptions into a single file is the same as putting them into

separate files and writing the file names on the FRACAS command line.

A comment can be put anywhere in the input file. All characters in a line which follow

a # sign are ignored. Also, entire lines whose first character is # are ignored, i.e. those

lines are not considered as blank lines. This difference is important, because blank lines

are significant in the input file syntax.

5.1. GLOBAL VARIABLES

One global variable per row must be specified in the input file.

framesize= Size of the frame expressed in TRUs.

frametime= Time length of the frame expressed in TMUs.

rttime= Round trip time expressed in TMUs.

histlen= Size of the memory allocated to record the histories, expressed

as a number of samples. A sample per frame is generated for

each observable statistic different from tru_delay. To be

removed in a future version.

[trudhistlen=] Size of the memory allocated to store the history of tru_delay,

expressed in number of samples. A sample is generated for each

group of consecutive TRUs sharing the same delay. Default =

2*histlen.

[warmup=] Number of TMUs to expire before starting to record the data.

Default = 0.

[seed=] Seed for all the random number generations that do not have an

explicit seed selection. Zero means that the system time is used

as the seed. Default = 0.

[max_cslen=] Maximum number of categories (bins) to use when the

categorise computer is called with an unspecified number of

bins. Default = 25000.

13

[ref_traffic=] Used as a reference traffic value by those generators which

specify their mean throughput with a factor to be multiplied by

this quantity rather than with an absolute number.

5.2. INITER LINE

Only one initer can be specified. Since the allocators usually impose a delay of one or

two rttime, the first few frames have no requests. The initer decides the allocations of

these first frames.

5.2.1. Equally distributed datagram allocation initer (even)

The stream allocations are equal to the sreq value for each station; the VBR

allocations are equal to vminreq for each station; the remaining available datagram

space is evenly divided among all the stations.

syntax: initer even

5.2.2. No datagram allocation initer (zero)

Stream and VBR are allocated as in the even initer; no allocations are given to the

stations for the datagram traffic.

syntax: initer zero

5.3. REQUESTER LINE

Only one requester can be specified. It computes the requests for each station. It is

called for each station once per frame.

5.3.1. Queue requester (queue)

For each type of traffic a request is issued, equal to the current relevant queue

length.

syntax: requester queue

5.3.2. FID/VBR (fodaibea)

A station makes a request only when it has an allocation (either stream, VBR or

datagram). For the stream traffic a request is made equal to the sreq parameter of

the streamreq keyword. For the VBR traffic, a request is made equal to the

14

vminreq parameter of the vbrreq keyword if the input traffic is less than vminreq;

otherwise, the request is equal to vmaxreq. The VBR input traffic estimation is

changed at each frame, using the average value of the last vwin frames. The

datagram request is equal to the datagram queue length plus dH times the input

traffic, where dH is a temporal constant.

The datagram input traffic estimation is changed every dwin frames, using the

average value on this time interval.

syntax: requester fodaibea dH= dwin= vwin=

where:

dH= temporal constant. Non negative floating point number.

dwin= positive number. Default=1.

vwin= positive number. It may be omitted if no station specifies vminreq and

vmaxreq.

5.3.3. FEEDERS and DRIFS

Same as the fodaibea requester. The only difference is that a request is always

made, irrespective of whether the station has an allocation or not.

5.4. ALLOCATOR LINE

Only one allocator can be specified. It computes the allocations of each station. It is

called once per frame, it looks at the requests of all the stations and computes the

allocations of all the stations.

5.4.1. Fixed TDMA (fixed)

The stream allocations are set equal to the sreq value of each station. The VBR

allocations are set equal to the VBR request, bounded by the vminreq and

vmaxreq values of the vbrreq keyword. The remaining space in the frame is

equally divided among the stations and assigned as a datagram allocation,

independently of the stations’ datagram requests.

syntax: allocator fixed

5.4.2. FID/VBR (fodaibea)

The channel space is shared among the stations according to the FID/VBR access

scheme. The stream allocations are set equal to the sreq value of each station. The

VBR allocations are set equal to the VBR request, bounded by the vminreq and

vmaxreq values of the vbrreq keyword. The datagram allocations are computed

15

by using the FID/VBR algorithm. The delay between the request and the

corresponding allocation being assigned to the requesting station is an integer

number of frames, equal to 3+2 (rttime / frametime), where the division is an

integer excess division.

syntax: allocator fodaibea bovh= cs= csovh= [csevery=] [fas=]

[fas_every=] [mindall=] [maxdall=] [allnmin=] [allnmax=] [alld=]
[trace=]

where:

bovh= overhead, in TRUs, for burst transmission. Must

be less than framesize.

cs= size in TRUs of the control slot. Must be less

than framesize.

csovh= overhead, in TRUs, for all the allocations given

to a station as redistribution gift or control slot.

Must be less than framesize and not greater than

cs.

[fas=] size in TRUs of the First Access Slot. Must be

less than framesize. Default = 0.

[fas_every=] number of frames lasting between two

consecutive FASs. Default = 32.

[mindall=] minimum datagram allocation, in TRUs.

Default = <bovh>.

[maxdall=] maximum datagram allocation, in TRUs.

Must be greater than <bovh>. Default is

framesize/2.

[allnmin=] minimum number of stations used for computing

the quote of the datagram request that is

assigned. Default value = 5.

[allnmax=] maximum number of stations used for computing

the quote of the datagram request that is

assigned. Default value = 50.

[alld=] the quote of the datagram request assigned to

each station in the assignment cycle is equal to

100 times the number of stations divided by alld

(default 100). The minimum and maximum

number of stations used for these calculations are

allnmin and allnmax, respectively (defaults 5 and

50).

[trace=] flag for enabling tracing [y/n]. Default = n.

16

5.4.3. FEEDERS (feeders)

The channel space is shares among the stations according to the FEEDERS access

scheme. The stream allocations are equal to the sreq value of each station; the

VBR allocations are equal to the VBR request, bounded by the vminreq and

vmaxreq values of the vbrreq keyword; the datagram allocations are computed by

using the FEEDERS algorithm.

The delay between the request and the corresponding allocation is an integer

number of frames, equal to 2+rttime /frametime, where the division is an integer

excess division.

syntax: allocator feeders na= rbovh= dquote= [bovh=] [maxdall=] [trace=]

where:

na= number of frames in which the allocations do not change

(assignment cycle length expressed in frames).

rbovh= reference burst overhead, in TRUs. Is subtracted from the available

space once every na frames.

dquote= floating point number. Fraction of the datagram request assigned in

the datagram assignment cycle.

[bovh=] burst transmission overhead, in TRUs. Must be less than framesize.

[maxdall=] maximum datagram allocation, in TRUs.

Must be greater than <bovh>. Default is half the available space.

[trace=] flag for enabling tracing [y/n]. Default = n.

5.4.4. DRIFS (drifs)

The channel space is shared among the stations according to the DRIFS access

scheme. The stream allocations are equal to the sreq value of each station; the

VBR allocations are equal to the VBR request, bounded by the vminreq and

vmaxreq values of the vbrreq keyword; the datagram allocations are computed

using the DRIFS algorithm. The delay between the request and the corresponding

allocation is an integer number of frames, equal to 2+rttime / frametime, where

the division is an integer excess division.

syntax: allocator drifs stinframe= stovh= dquote= [bovh=] [maxdall=]

[trace=]

where:

stinframe= maximum number of control slots in a frame.

stovh= control slot length in TRUs.

dquote= floating point number. Fraction of the datagram request

assigned in the datagram assignment cycle.

17

[bovh=] burst transmission overhead, in TRUs. Must be less than

framesize.

[maxdall=] maximum datagram allocation, in TRUs.

Must be greater than <bovh>. Default is half the available

space.

[trace=] flag for enabling tracing [y/n]. Default = n.

5.5. STOPPER LINE

This line specifies the name of a routine that is called at each frame. Each time it is

invoked, the stopper decides whether or not the simulation must end.

5.5.1. Elapsed time stopper (stopper)

Interrupts the simulation after a specified time interval.

syntax: stopper maxtime time= |frames=

where:

time= number of TMUs after which the simulation must be stopped.

frames= number of frames after which the simulation must be stopped.

5.6. STATION DESCRIPTION

5.6.1. The station identifier (station)

syntax: station <number>[:<number>]

where:

<number> station number. If n1:n2 is specified, the current station block

definition is valid for stations from n1 up to n2. The stations must

be declared in ascending order, starting from 1. No holes are

allowed in the numbering.

5.6.2. The stream allocation request (streamreq)

For each station a request for stream traffic allocation can be specified. Allocators

and Requesters use this number for their computations (if they need them).

syntax: streamreq sreq=

where:

sreq= number of TRUs requested for the stream traffic in each frame.

18

5.6.3. The VBR allocation request (vbrreq)

For each station two requests for VBR traffic allocation can be specified.

Allocators and Requesters use these numbers for their computations (if they need

it).

syntax: vbrreq vminreq= vmaxreq=

where:

vminreq= is the minimum number of TRUs requested in each frame.

vmaxreq= is the maximum number of TRUs requested in each frame.

5.6.4. The maximum queue length

For each station the maximum lengths (in TRUs) of the stream, VBR and

datagram queues can be specified. Zero means infinite queue. When a queue

length is different from 0, incoming TRUs are rejected once the respective queue

length has exceeded its maximum length. The number of packets discarded is

registered in the s_dropped, v_dropped and d_dropped observables, respectively.

syntax: maxqueuelen [s=] [v=] [d=]

where:

[s=] maximum stream input queue length. Default = 0.

[v=] maximum VBR input queue length. Default = 0.

[d=] maximum datagram input queue length. Default = 0.

5.6.5. The traffic generators

For each station, several traffic generators can be defined. The available

generators are: constant, poisson, impulse, fgn, external.

Each generator generates one traffic type, chosen from datagram (d), stream (s) or

VBR (v).

Each non deterministic generator has a seed parameter, which can optionally be

set to an integer. The seed is used to generate pseudo random numbers. If a seed

of 0 is given, the seed for that generator is generated at startup by using the global

variable seed. In this case, the seed is generally different if the overall structure of

the simulation changes, that is, if stations are added or removed, or the generators

19

changed, or anything else changes. Moreover, if the global seed parameter is 0

and the generator seed parameter is 0, the seed used for the pseudo random

number generation changes at each run, provided that the runs are at least one

second apart, because the global seed variable is initialized with the system time.

If the same sequence of traffic from a generator in different runs is required, a

seed different from 0 must be set. The default for the seed parameter is 0.

Each generator generates bursts of TRUs. In the generator descriptions, whenever

a TRU is mentioned, a burst of TRU is meant if the burst parameter is set to a

number greater than 1. The rate of the burst generation remains the same

whatever the burst length is. The number of TRUs generated in a frame is simply

multiplied by the burst size (an integer number). The default burst length is 1.

Each generator has a parameter that indicates the mean total traffic generated

(TRUs per TMU). This can be either a traffic floating point number indicating the

absolute value of the traffic mean, or a tfactor floating point number indicating

the traffic mean relative to the global parameter ref_traffic. In the first case the

traffic generated is equal to traffic *burst , in the second case it is equal to tfactor

* ref_traffic *burst.

5.6.5.1. Constant traffic generator (constant)

This generates TRUs with constant interarrival times. The use of the start, stop

and cycle optional parameters allows an On-Off generator to be created with a

constant duty cycle and fixed interarrival times between TRUs during the On

states. cycle is the repetition period length. A cycle is composed of an Off-On-off

sequence. Within the cycle, start and stop are the times when the On period

begins and ends, respectively. cycle set to 0 means no repetition (infinite period

length). Stop set to 0 means that the “on” period lasts until the end of the cycle.

Thus, an infinite step of constant traffic has both cycle and stop equal to 0, while

a single impulse of constant traffic has cycle equal to 0 and stop different from 0.

All the parameters are floating point values.

syntax: generator <traffic_type> constant traffic=|tfactor= [burst=]

[start=] [stop=] [cycle=]

where:

[start=] see explanation above. Default = 0.

[stop=] see explanation above. Default = 0 (which means

"never stops")

[cycle=] see explanation above. Default = 0 (which means

"infinite cycle").

20

5.6.5.2. Poisson traffic generator (poisson)

This generates TRUs with exponentially distributed interarrival times. Start, stop

and cycle optional parameters allow an On-Off generator to be created with a

constant duty cycle and a Poisson generation rate during On states. The meanings

of the cycle, start, and stop parameters are the same as in the constant traffic

generator.

Seed is an integer. All the other parameters are floating point values.

syntax: generator <traffic_type> poisson traffic=|tfactor= [seed=] [burst=]

[start=] [stop=] [cycle=]

where:

[start=] see explanation for the constant traffic generator.

Default = 0.

[stop=] see explanation for the constant traffic generator.

Default = 0 (which means "never stops")

[cycle=] see explanation for the constant traffic generator.

Default = 0 (which means "infinite cycle").

5.6.5.3. Impulsive traffic generator (impulse)

This is a two states-Markov modulated-Poisson generator. Generates TRUs with

exponentially distributed interarrival times where the exponential constant

depends on the state where the traffic generator is. The probability of switching to

the other state is constant, so the time of permanence in each state is

exponentially distributed. The resulting traffic is Poisson distributed with two

possible transmission rates, chosen at random. Four parameters are needed to

define the statistical behaviour of such a generator. One is the average generated

traffic, which is specified using the traffic|tfactor parameter. The other three

parameters are: the mean cycle length cycle, which is the sum of the mean times

of permanence in the two possible states; the mean duty cycle duty, which is the

ratio between the mean permanence in state 1 and the mean cycle length; the

burstiness burstiness, which is the ratio between the mean traffic rate instate 1 and

the mean traffic overall traffic rate. The ratio of the traffic rate in state 1 to the

traffic rate in state 2 is expressed by: ratio12 =
burstiness - burstiness · duty

1 - burstiness · duty and,

conversely: burstiness =
ratio12

1 - duty + ratio12 · duty.

seed is an integer. All the other parameters are floating point values.

21

syntax: generator <traffic_type> impulse traffic=|tfactor= cycle= duty=

burstiness= [seed=] [burst=]

where:

cycle= the mean cycle length (length of state 1 plus length

of state 2) in TMUs.

duty= the ratio between the mean length of state 1 and the

mean cycle length.

burstiness= the ratio between the mean traffic rate of state 1 and

the overall mean traffic rate (the one indicated by

the traffic|tfactor parameter).

5.6.5.4. Fractional Gaussian Noise traffic generator (fgn)

The number of TRUs generated per frame by this generator approximates a

Fractional Gaussian Noise (fgn) process. The generator uses the Random

Midpoint Displacement (rmd) algorithm to approximate the fgn process. The

algorithm generates a cluster of pow(2, rmdn) samples at a time. If the length of

the simulation is greater than this value, a new cluster of samples is generated, not

correlated with the previous ones. The mean of each cluster of samples is forced

equal to the traffic requested.

syntax: generator <traffic_type> fgn traffic=|tfactor= peakedness= H=

[rmdn=] [seed=] [burst=]

where:

peakedness= the ratio a between the variance and the mean of the

samples per TMU. The peakedness aT of the process

over an interval of length T is aT = a2H.

H= the Hurst parameter of the process. Usually in the

range between 0.7 and 0.85.

[rmdn=] binary exponent of the length of a cluster of

samples. Default = 18.

5.6.5.5. External traffic generator (external)

This generates TRUs at times specified in an external data file. The file is in

ASCII format, with an integer number per line. If the type is set to packet, the

numbers in the file are integers which represent the number of TRUs generated in

successive frames. The first line contains the number of TRUs generated in the

first frame and so on, one line per frame. If the type is set to interval, the numbers

22

are floating point numbers representing the distance in TMUs from one TRU

generation to the next. The first line contains the generation time of the first TRU,

the second the time elapsing from the generation of the first to that of the second

and so on, one line per TRU. The times for the interval type can also be scaled

(usually to do time unit conversions) by multiplying them by a constant indicated

with the scale parameter. An external process can feed the generator with the

numbers, instead of having them stored in a file. In this case the parameter ipipe

instead of ifile must be used. This is the only generator that does not allow a

traffic|tfactor parameter.

syntax: generator <traffic_type> external ifile=|ipipe= type= [scale=]

[burst=]

where:

ifile= name of the file containing the numbers in ASCII

format, one per line.

ipipe= the command line used to invoke a process which

writes on its standard output a sequence of ASCII

numbers, one per line.

type= the string packet or the string interval.

[scale=] floating point number that multiplies the numbers

read from the file or pipe. Only allowed with the

interval type. Default = 1.

5.7. COMPUTER LINES

A computer is a routine that operates on observables. Each computer makes a different

operation. Computers can be added to FRACAS.

5.7.1. The observables

Observables have names starting with s_ or v_ or d_. These prefixes stand for

stream, VBR and datagram respectively, meaning that the statistics collected only

relate to the respective type of traffic. Here is a list of the available observables

and a brief discussion for each of them.

s_input, v_input, d_input

Number of TRUs presented to the input of a station per frame. The TRUs are

generated by the generators declared in the station blocks. These numbers are the

sum of those generated by the station’s generators at each frame.

23

For the pseudo-station sum the observable is the sum of the inputs to all the

stations.

s_queue, v_queue, d_queue

Length of the input queue of a station. Each station receives the TRUs generated

by its generators and adds them to its input queues, one for each type of traffic.

The lengths of these queues are registered in the observables above; the queues are

then reduced by the number of TRUs to be sent in the current frame.

For the pseudo-station sum the observable is the sum of the queues of all the

stations.

s_sent, v_sent, d_sent

Number of TRUs transmitted in a frame by a station. If the length of the queue of

a specific type of traffic is greater than the relevant allocation received, this

number is set equal to the allocation for that frame, otherwise it is equal to the

queue length for that frame.

For the pseudo-station sum the observable is the sum of the TRUs sent by all the

stations.

s_request, v_request, d_request

Request of a station in a frame for each type of traffic. These are the numbers

computed by the requester at each frame.

For the pseudo-station sum the observable is the sum of the requests made by all

the stations.

s_allocation, v_allocation, d_allocation

Number of TRUs allocated to a station in each frame for each type of traffic.

These are the numbers computed by the allocator.

For the pseudo-station sum the observable is the sum of the allocations given to all

the stations.

v_extraspace, d_extraspace

There is a hierarchy among the types of traffic. At each frame, the space not used

by stream traffic is given as extra space to the VBR traffic, and the space not used

by VBR traffic is given as extra space to datagram traffic. Here is how the

allocation sequence for each station works.

1. The stream TRUs are sent. If s_queue is less than s_al locat ion,

v_extraspace for this frame is set to the difference, and s_sent is set equal to

s_queue. Otherwise s_sent is set equal to s_allocation.

24

2. The VBR TRUs are sent. If v_queue is less than v_allocation plus

v_extraspace, d_extraspace for this frame is set to the difference, and

v_sent is set equal to v_queue. Otherwise v_sent is set equal to v_allocation

plus v_extraspace.

3. The datagram TRUs are sent. If d_queue is less than d_allocation plus

d_extraspace, d_sent is set equal to d_queue. Otherwise d_sent is set equal

to d_allocation plus d_extraspace.

For the pseudo-station sum the observable is the sum of the extra spaces of all the

stations.

d_unused

The space (in TRUs) unused in a frame by a station. It is equal to d_allocation

plus d_extraspace minus d_sent.

For the pseudo-station sum the observable is the sum of all the TRUs not used in

the system.

s_delay, v_delay, d_delay

The frame delay in TMUs for each type of traffic. Each sample is the mean of the

delays of the TRUs generated in a frame by a station’s generators. The delay is

equal to the round trip time plus the queueing time, which is an integer number

multiplied by the frametime.

For the pseudo-station sum the observable is the mean delay of the TRUs

generated in a frame by all the stations.

s_trudelay, v_trudelay, d_trudelay

The TRU delay in TMUs for each type of traffic. This observable provides a

sample per TRU, while the frame delay observable provides one sample per

frame. The delay is equal to the round trip time plus the queuing time, which is an

integer number multiplied by the frametime.

For the pseudo-station sum the observable is the delay of each packet generated in

the system. The ordering does not make much sense: it is the listing of the delay

of packets generated by each station in turn, so making a graph or correlation of it

would yield nonsense.

5.7.2. The computers

A computer is a routine that performs calculations on some station’s observables;

usually some kind of statistics are computed. A computer line can specify more

25

than one station. The <stations> argument can be either a number (the station

number), or two numbers separated by columns (the first and the last station

numbers). In this case, the computer is invoked repeatedly on each of the stations

specified. As a special case, the pseudo-station sum can be specified. Each

observable has a special meaning for this pseudo-station, which is described in

the section about observables. One more special case, all, exists: the computer is

run on all the stations, including the sum pseudo-station. The pseudo-station sum

is indicated as station number 0 in the output listings.

All computers produce their output on the standard output by default. Each

computer can also be instructed to send its output to a file or to an external

program. One of three arguments can optionally be added to the argument list of

each computer:

[ofile=] send the output to a file specified as an argument. The previous

contents of the file are overwritten.

[afile] append the output to a file specified as an argument.

[opipe] pipe the output to a program whose command line is specified

as an argument.

For each of the three possibilities, a string must be supplied after the equal sign.

The string may be enclosed between double quotes if it contains other than

alphanumeric characters plus the period and the minus sign. A double quote

within the string can be quoted by preceding it with a backslash.

The output produced on the standard output is generally more verbose than the

output directed to files or external programs. Details are provided in each

computer’s description. It is also possible to obtain a terse printing on standard

output by invoking FRACAS with the -t (terse) option. In this case, the output

sent to stdout is equal to the output sent to files or pipes.

5.7.2.1. Simple statistics computer (simplestats)

This computer prints on standard output the minimum, maximum, number of

samples, mean and standard deviation of the specified observable. These statistics

are printed on a single line, preceded by a header line and followed by a blank

line. The header and the blank line are not printed with the -t (terse) option.

s y n t a x : computer <stat ions> <observable> simplestats

[ofile=|afile=|opipe=]

5.7.2.2. Quantile computer (quantile)

This computer prints the quantile of an observable. The 0.9 quantile of an

observable is the sample such that 90% of samples are less or equal than it. Each

26

output line contains the requested quantile and the result, preceded by a header

line and followed by a blank line. The header and the blank line are not printed

with the -t (terse) option.

syntax: computer <stations> <observable> quantile [ofile=|afile=|opipe=] q=

where:

q= the fraction of the number of samples less or equal to the value printed

by the quantile computer. It is a floating point number in the [0; 1]

interval.

5.7.2.3. Sample listing computer (listing)

This computer lists the values of all the samples observed. One parameter, every,

and three styles are available.

The normal style prints one value per line, taking one sample every every

samples.

The aggregate style prints one value per line, which is the sum of every

successive non-overlapping samples.

The compact style prints two values per line. It groups successive equal samples

in one line: the first number printed is the number of equal successive samples,

the second number is their value. The parameter every makes no sense with this

style.

The listing of the values is preceded by a header line and followed by a blank

line. The header and the blank line are not printed with the -t (terse) option.

syntax: computer <stations> <observable> listing [ofile=|afile=|opipe=]

[type=] [every=]

where:

[type=] a string whose value is normal, aggregate or compact.

See above for explanation. Default = normal.

[every=] a positive integer. See above for explanation.

Default=1.

5.7.2.4. Distribution computer (categorise)

This computer divides the samples of the observables into “categories”, or “bins”.

The number of categories is a parameter. All the categories have the same size and

span the entire range of the observable, from its minimum to its maximum value.

When zero is specified as the number catn of categories, the categories are built

with a width equal to 1, centred around all integer values plus 0.5, covering the

entire range of the observable. This feature is useful when the observable is known

to take on integer values. The maximum number of bins computed when catn is 0

27

is max_cslen, a global variable to be specified at the beginning of the input file. If

the range of the observable is greater than this parameter’s value, the bins are

enlarged to integer widths, using the smaller width such that the number of

categories is less than max_cslen.

A list of lines is produced, with two values in each line: the centre value of the

category and the number of samples in it. The sum of all the samples in the

different categories is equal to the number of samples of the observable.

The listing is preceded by a header line and followed by a blank line. The header

and the blank line are not printed with the -t (terse) option.

syntax: computer <stations> <observable> categorise [ofile=|afile=|opipe=]

catn=

where:

catn= number of categories in which the range of observable values is

divided. 0 makes categories of width 1, centred on integer

numbers plus 0.5. Default is 0.

5.7.2.5. Computer for graphing the distribution on a tty (ttydistrib)

This computer creates a graph—printable on a tty or a character printer—which

represents the mass density function of the observable. The graph is preceded by a

header line and followed by a blank line. The header and the blank lines are not

printed with the -t (terse) option.

syntax: computer <stations> <observable> ttydistrib [ofile=|afile=|opipe=]

[rows=] [cols=]

where:

[rows=] number of rows used for representing the character

graph. Default = 22.

[cols=] number of columns used for representing the

character graph. Default = 78.

5.7.2.6. Computer for graphing the observable versus time on a tty (ttygraph)

This computer creates a graph—printable on a tty or a character printer—which

represents the observable versus the time. The graph is preceded by a header line

and followed by a blank line. The header and the blank lines are not printed with

the -t (terse) option.

syntax: computer <stations> <observable> ttygraph [ofile=|afile=|opipe=]

[rows=] [cols=]

where:

28

[rows=] number of rows used for representing the character

graph. Default = 22.

[cols=] number of columns used for representing the

character graph. Default = 78.

5.8. INPUT FILE SYNTAX

A FRACAS input file is composed of a sequence of one or more run descriptions.

file contents:= <run description>

{ <blank line>

end

<blank line>

<run description>}

run description:= <global variable section>

<initer section>

<requester section>

<allocator section>

<stopper section>

<station section>

{<station section>}

<computer section>

global variable section:=<global variable line>

{<global variable line>}

<blank line>

global variable line:= <global variable name>=<global variable argument>

initer section:= initer <initer name> <initer arguments>

<blank line>

requester section:= requester <requester name> <requester arguments>

<blank line>

allocator section:= allocator <allocator name> <allocator arguments>

<blank line>

29

stopper section:= stopper <stopper name> <stopper arguments>

<blank line>

station section:= station <number>[:<number>]

[streamreq sreq=<argument>]

[vbrreq vminreq=<argument> vmaxreq=<argument>]

[maxqueuelen [s=<argument>] [v=<argument>] [d=<argument>]]

<generator line>

{<generator line>}

<blank line>

generator line:= generator s|v|d <generator name> <generator arguments>

computer section:= <computer line>

{<computer line>}

computer line:= computer <ids> <computer name> <observable> <computer arguments>

ids:= <number>[:<number>] | sum | all

30

REFERENCES

1. N. Celandroni, E. Ferro, N. James, F. Potortì

"FODA/IBEA: a flexible fade countermeasure system in user oriented

networks", International Journal of Satellite Communications, Vol. 10, Nº. 6,

pp. 309-323, November-December 1992.

2. N. Celandroni, E. Ferro, F. Potortì

"FODA/IBEA-TDMA. System Description. Final Report", CNUCE Report

C94-18, September 1994.

3. N. Celandroni, E. Ferro, F. Potortì

"The performance of a TDMA satellite system for non real-time and real time

traffic", CNUCE Report C95-12, February 1995.

4. N. Celandroni, E. Ferro, F. Potortì

"Satellite bandwidth allocation schemes for VBR applications", CNUCE

Report C94-24, December 1994.

5. N. Celandroni, E. Ferro, F. Potortì, M. Conti, E. Gregori:

"A bandwidth assignment algorithm on a satellite channel for VBR traffic",

submitted to the International Journal, February 1995.

6. N. Celandroni, E. Ferro, F. Potortì

"Study of distributed algorithms for satellite capacity assignment in a mixed

traffic and faded environment", CNUCE Report C-95-28, September 1995.

31

APPENDIX

An example: input file

point 1/6

##

ref_traffic 0.6

#

framesize 615 # traffic units

frametime 20 # frame length is 20ms

rttime 252 # round trip time is 252ms

histlen 300000 # length of histories

warmup 12000 # wait 12s before registering

seed 0

initer even

requester feeders-drifs dH=400 dwin=5 vwin=25

allocator drifs dquote=0.05 bovh=8 stinframe=8 stovh=16

stopper maxtime time=6000000

station 1

generator d impulse cycle=3000 duty=0.15 burstiness=5 burst=4 tfactor=0.42

station 2

generator d impulse cycle=3000 duty=0.15 burstiness=5 burst=4 tfactor=0.31

station 3

generator d impulse cycle=3000 duty=0.15 burstiness=5 burst=4 tfactor=0.21

32

station 4

generator d impulse cycle=3000 duty=0.15 burstiness=5 burst=4 tfactor=0.06

compute sum simplestats d_input

compute sum simplestats d_trudelay

An example: FRACAS output

Number of `d_input' samples for station #0 is 299400. Statistics:

samples minimum maximum average var stddev

299400 0 328 48.04 2224 47.16

Number of `d_trudelay' samples for station #0 is 14381736. Statistics:

samples minimum maximum average var stddev

14381736 272 312 272.1 1.29 1.136

