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Abstract

Most of us carry mobile devices that routinely disseminate radio meszges,
as is the case with Wi-Fi scanning and Bluetooth beaconing. We investjate
whether it is possible to examine these digital crumbs and have tha reveal
useful insight on the presence of people in indoor locations, as thetdrature
lacks any answers on this topic. Wi-Fi probes are generated sparsely andteh
anonymised, which hinders the possibility of using them for targete localisation
or tracking. However, by experimenting in three di erent indoor environments,
we demonstrate for the rst time that it is possible to extract from th em some
positioning information. Possible applications include identifying frequented re-
gions where many people are gathered together. In the described experenta-
tion with sni ng devices we adopted ngerprinting interpolation, w hich requires
no survey phase and automatically adapts to changes in the environment. fie
same process can be carried out using the Wi-Fi access points alreadystalled
in the environment, thus allowing for operation free of installation, surveying
and maintenance.

Keywords: Passive indoor localisation; survey-free ngerprinting; Wi-Fi probe
eavesdropping

1. Introduction

Most mobile device we bring with us regularly send Wi-Fi packets cded
probe requeststo detect nearby Wi-Fi networks. The great majority of such
messages are discarded by networking devices that receive them tykese digital
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crumbs hide potential for revealing some aspects of human behaviourush as
people mobility.

In this paper we analyse Wi-Fi probe request messages sent by mobilesd
vices, with the goal of estimating the device positions in indoor envionments.
The purpose of this experiment is to demonstrate the feasibility ofidentifying
crowded regions by sning probe request, a task that can be performedby
Wi-Fi access points already installed in the region of interest, wittout any ad-
ditional hardware installation and without the need for a surveying phase or
maintenance.

Wi-Fi devices emit probes to discover the existence of access s (APS).
This procedure is called active scan, in contrast with passive scarduring which
devices passively listen for Wi-Fi beacons sent by APs. We use snhg devices
designed by Cloud4Wi E], called FogSenses, which passively collect probes sent
by stationary and mobile devices and their received signal strength (I8S).

We study some meaningful statistics of the gathered data, such as the re-
ceived signal strength (RSS) distribution of the probes and how the nmber of
probes vary according to the periodic activities of people.

Using RSS, we then evaluate the accuracy of some range-free indoor local
tion techniques, which are techniques that do not rely on the radio popagation
properties of the environment. Most of our experiments are concernedith n-
gerprinting, a method based on RSS measurements made at a series of known
signi cant points in the environment.

Usually ngerprinting requires a survey phase, which is a time-@nsuming
measurement campaign devoted to populate angerprinting database which is
then used to perform localisation; instead, we adopt an survey-free ppcedure
to build the database, with a twofold advantage. First, we can build and pei-
odically rebuild the ngerprint database without any human interven tion, and
without any extra cost; second, in case the number of Wi-Fi APs is too dw, we
can extend our sensing architecture by adding FogSenses without anyanual re-
con guration other than registering the location coordinates of new FogSeses.
Our work extends the preliminary study proposed in [8], by consideing addi-
tional data collection campaigns in environments with di erent featur es, and
by greatly expanding the span of location estimating algorithms, which ve then
combine into an ensemble estimator

The goal of this analysis is to assess whether Wi-Fi probes are suitablet
identify sample locations of human presence in indoor locations. We a&r not
striving to provide the best possible localisation accuracy, but b demonstrate
for the rst time that Wi-Fi probes can be used to sample human preserce
locations.

We speak about sample locations because Wi-Fi devices emit probes only
occasionally, so probes cannot be used to track a device or to reliablgéntify
its presence. Such samples can be used for multiple purposes, faxaenple
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as an aid to intrusion detection system, which would work by spotting the
presence of unauthorised Wi-Fi devices in a given area. Another usage @ an
activity heartbeat, by assessing the presence and regular activity o& stationary
device in a given area. What we think is the most interesting is perdrming
crowd localisation, that is estimating crowded regions, areas where several Wi-
Fi enabled devices are located for some time. Our work does not performny
real-life experiments in any of these scenarios; rather, its purp@sis to assess
the feasibility of using Wi-Fi probes to such aims.

The experimental results we obtain show a median localisation error blow
5.5 m, which is in line with the state of the art in indoor localisation algorithms
based on Wi-Fi only, such as those participating to the EVAAL-ETRI o -sit e
competition at IPIN 2015 [9]. It is worth noting that results obtained duri ng
the IPIN competitions are generally worse than those claimed by authors of
indoor localisation papers, because they are measured in realistic arwbntrolled
conditions, rather than the same environment where a given system habeen
developed |[10].

This is the rst time that accurate measurements of probe-based locasation
performance are done; they give a strong indication that it is indeed posible
to implement and deploy practical systems that use only Wi-Fi probedetection
to perform crowd localisation in areas such as a shop inside a mall or an open
space o ce.

The remainder of this paper is organised as follows. Section Il coverglated
work in the eld of Wi-Fi probes used for localisation purposes. Sectn Il
describes our sensing architecture based on the FogSenses. Sectidrdescribes
the data gathering campaigns with an analysis of the quality of the obtained @ta
set. Finally Section V introduces our localisation framework with a cmmparative
analysis of the di erent techniques used. Section VI draws some cothgsions.

2. Related work

Few works concentrate on sni ng Wi-Fi probes. Even less do so with he
aim of localising people.

The main technical di culty is that probes are sent only occasionally, as
discussed in|[3], with an experimental study of several factors thatn uence
the number and the frequency of the probes sent by the popular smartpones.
There are two major factors determining the behaviour of devices, amely the
Operating System (OS) and the existence of known Wi-Fi networks. As an
example, devices based on Android 5.0.1 are observed to emit about 1500 probes
per hour in general, while for iOS devices (iOS 8.1.3) the number dropt 120
per hour. Devices usually send bursts of probes, the frequency olitsts strongly
depends on the existence of known networks. The observed frequanof bursts
ranges from one every 66 s (Android 5.0.1) to one every 330 s (iOS 8.1.3).

As a consequence, it is only possible to get sparse samples of peoplets p
sitions. Our goal is to study whether Wi-Fi probes are usable to idenify the
presence of unspeci ed people in a given indoor area, without any attept at



tracking or identifying speci ¢ devices. Speci cally, our work focuses on the
accuracy of the position samples through experimentation in a static enwvon-
ment.

In [[7], Wi-Fi probes are used to estimate the trajectory of deviceswhich is
a tracking task. This is made possible by instrumenting an arterial mad 2.8 km
long with 7 Wi-Fi monitors. The authors manage to track some individual
devices with a median error of about 50 m with monitors placed on average
460 m apart. They use a hidden Markov model of possible trajectories and
make the nal estimate using the Viterbi algorithm. They do not only sni for
Wi-Fi probes spontaneously sent by mobile devices, but use severadditional
techniques to elicit response packets from devices and increashet length of
packet bursts sent by each device, thus improving tracking pedrmance once
the device radio is on, but can do nothing when the device turns o the radio
or anyway decides to not transmit anything. Accuracy performance of thisap-
proach is very good, considered how much far apart are the monitors, buttiis
only achievable in an environment with where two requirements are isnultane-
ously satis ed: few well-de ned possible trajectories and devie tracking. Our
work instead is aimed at being applicable in wide unstructured ind@r areas
such as a mall where a great number of trajectories are possible and con gag
a Markov model would be a complex and long task, which contradicts our ainof
simple setup. Moreover, many modern devices' operating systemse some form
of probe anonymisation which prevents tracking, unless the device iassociated
with a Wi-Fi network, which is generally not true.

The only other paper we found that exploits Wi-Fi probe messages for lo-
calisation purposes is|[13], where the authors track pedestrians in an odbor
environment using triangulation. The nal gures indicate a 1 m mean position-
ing error on a single experiment without any details on the number of samles
taken. While it is possible to observe this high accuracy in a small otdoor envi-
ronment with few obstacles, the adopted triangulation method is not geneally
usable in an indoor environment, where re ections from ceiling and oors are
strong and no line of sight from the device to the monitor is a common sitation,
leading to a generally weak relationship between received signal €tngth and
distance, which makes triangulation unreliable.

In summary, to the best of our knowledge there is no direct comparisorior
our work in the literature and no measurement campaigns, whether extesive
or not, have been published on the positioning accuracy that one can obtaiby
eavesdropping Wi-Fi probe request packets using APs or sni ng devces.

3. The probe sensing architecture

Devices with an enabled Wi-Fi network periodically emit Wi-Fi pr obe re-
quests. Their purpose is to actively scan the network searching foavailable
Wi-Fi access points or for a previously accessed access point. Thissdovery
phase usually prepares an association phase through which a device ediabes
a connection to a speci c network. Devices send probes with freqgncy depend-
ing on several factors, including the Wi-Fi device driver and decsions made by



Figure 1: A FogSense Wi-Fi sensor used in the measurement camp aign.

the operating system. For example, some devices do not perform any Wi
scanning when they are connected to a wired network, while other deces still
emit Wi-Fi probes even if they are connected. Probes are sensed byla\Ps
in the area as part of their normal activity, as the IEEE 802.11 standard man-
dates. Using them for di erent purposes can be done internally to theAPS or
externally by a server to which APs send the collected probes. Forimplicity of
experimental set-up, we collect the probes emitted by Wi-Fi-embled devices by
means of a network of sni ng devices, hamely FogSense devices diskrited by
Cloud4Wi. FogSenses are plug-and-play Wi-Fi sensors provisioned wita USB
port as well as a mini-USB port for con guration. (gure The Wi-Fi mod-
ule is a Broadcom WICEDTM from USI, supporting IEEE 802.11 b/g/n Wi-Fi
standards. A FogSense logs Wi-Fi probes emitted by nearby Wi-Fi-enaldd de-
vices and sends the logs to a server at intervals of 15 s. The data stored/b
the server includes information extracted from the captured probesincluding
reception time, MAC address of the sending device, ID of the receing FogSense
and RSS measured by the FogSense.

4. Experimental setting

We perform our experiments in three scenarios characterised by derent
layouts, sizes and number of sniers needed to cover the area. Analis of
probes presented in this work are based on anonymised data. Maps of the the
scenarios are shown in gurg P.

In a real deployment scenario probes are normally gathered by already in
stalled APs, and FogSenses are only deployed if the number and positiors
APs is not su cient to obtain good accuracy performance. In our experiments,
however, we only work with FogSenses, for simplicity of set-up.



The CNR area in Pisa (from now on CNR) covers about 350 rA and it
is characterised by a straight corridor with o ces located on both sides. The
sensing region includes 12 o ces where we deployed 4 FogSenses asvaman
gure The Cloud4Wi Italian o ce (from now on C4WIT) covers about
250 and is located in an old historical building with 9 o ces of irregular
shape, where we deployed 8 FogSenses (guE]Zb). Finally, the Cloud4M&an
Francisco headquarter (from now on C4WUS) is an open o ce covering about
500 n? with 3 small o ces and a meeting area (on the right and on the top left
side of gure ) where we deployed 5 FogSenses.

It is apparent from the maps that the three scenarios are quite di erert.
C4WUS is an open space, with no obstructions. This is not very dissimdr
from CNR, where the walls are part gasbeton and part drywalls, both of which
are not a serious obstacle to Wi-Fi signals. On the other hand, CA4WIT is gite
di erent: this is an ancient building with many brick and stone wall s up to
60 cm thick. We expect this scenario to produce more accurate resisl because
di erent FogSenses generally receive very well dierentiated gjnal strengths
from devices.

We installed di erent number of FogSenses in the three areas, specially a
higher number is needed in the CAWIT location, because the e ect of he walls
is similar to signi cantly increasing the distances.

To evaluate the performance of the proposed methods, we noted the pogin
of someknown stationary devices, e.g. workstations, laptops, smartphones and
other Wi-Fi-equipped devices present in each location. The posibns of known
devices is the ground truth of our experiment: accuracy is measuredybcompar-
ing their real position with the one estimated by di erent localisat ion methods.
All devices are stationary: this is strictly true for workstations and |aptops,
and almost always true for the smartphones. Given o ce working habits, we
estimate that each smartphone, during the whole experiment, is loated into its
known position for about 90% of the time it is found inside the measuremen
area.

Note that experimenting with stationary devices, as we did, impliesno gen-
erality loss with respect to experimenting with moving devices. The localisation
procedure, in fact, relies on xed sni ers to receive a packet set by the device,
at moving speeds that have no in uence on radio propagation. Additionally the
prospected usage of the methods described in this paper is to gathearsples
of people's position, rather than tracking them, so the movement patern of
probe-emitting devices is largely irrelevant in this scope.

Among the known devices we could not include any that uses MAC address
randomisation techniques, such as those based on recent iOS operatingstems,
because randomisation makes it impossible to identify which devicés sending
the Wi-Fi probe. While this is a limitation as far as our experiment is concerned,
it does not impose any constraints for the intended usage of our techniqgiwhich,
again, does not involve tracking.

The data gathering campaigns have di erent duration, ranging from 30 days
at C4AWUS to 70 days at CNR, and di erent number of FogSenses installed in
each scenario. We show the number of distinct MAC addresses that we skrve
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Figure 2: Maps of the scenarios selected for the experiments . Blue dots show the FogSense
positions, red crosses indicate the reference devices.



Table 1: Scenario characteristics

Scenario| FogSenses MAC Duration Known Probes Size
addrs devices

CNR 4 24000 | 70 days 16 2.2e6| 350 n?

CAWIT 8 130000| 60 days 18 2.3e6| 250 n?

C4WUS 5 34000| 30 days 12 1.6e6 | 500 n?

in each scenario. The di erent numbers of observed MAC addresses adue to
the proximity of o ces to roads. Table I summarises the features of thethree
scenarios.

Since this paper is concerned with assessing whether Wi-Fi prolsecan be
used for the purpose of localisation, and since no other measurement cgaign

of this kind is available, in appendix [Appendix Alwe try to give an idea of the
numbers we are working with.

5. Performance of localisation algorithms with Wi-Fi probes

We experiment with some localisation algorithms, in order to nd the ones
with best performance in terms of accuracy and robustness to changingne
vironmental conditions. Our purpose is investigating whether we cannd an
algorithm with performance su cient to be used as a basis for crowd lo@lisa-
tion.

Generally speaking, RSS-based localisation techniques can be died into
range-basedand range-free methods. Range-based techniques estimate a user's
position by considering the received signal strength of that user's dvice and
exploiting a Wi-Fi signal propagation model. They are prone to errors dueto
re ection of waves over the walls, oor and ceiling, especially in the presence
of obstacles obstructing line of sight between transmitter and receier. On the
other hand, range-free techniques do not rely on the radio propagation progrties
of the environment. We only consider range-free algorithms.

Each algorithm we use has several parameters to be tuned. Choosing an
algorithm and a set of parameters gives rise to a di erent localisationmethod

All algorithms are based onk-NN classi cation, so each algorithm gives rise
to di erent methods based on the value ofk, which in our experiments varies
from 1 to 3. Given the target application, we expect that each device is een by
a low number of FogSenses, so we have not experimented with highealues of
k. The nal estimate is the centroid of the k estimates.

The simplest algorithm, which we call strongest estimates that the observed
device is in the same location as the FogSense which has observed thghest
RSS (Received Signal Strength), among those that have received thergbe.
When k is greater than 1, estimates are additionally considered for the second
strongest up to the k-th strongest. Since we usek from 1 to 3, the strongest
algorithm gives rise to 3 methods.



All the algorithms apart from strongest are based onngerprinting . Finger-
printing is a technique commonly used for indoor localisation, whit is composed
of an installation o -line phase followed by a run-timeon-line phase. During
the o -line phase, one takes measurements of the RSS of Wi-Fi packets received
from the APs (Wi-Fi Access Points), as observed at a number of refererepoints.
These reference observations are collected into agerprint database. During
the on-line phase when an agent needs localisation, it makes a new observation,
by measuring the RSS it gets from the visible APs at the location. Thisnew
observation is compared with those present in the ngerprint database. The
entry in the database that is closest to the new observation is selectk and the
agent's estimated position is set to that of the closest entry in thedatabase, or
the centroid of the k closest entries whenk-NN is used. Fingerprint methods
have been rst proposed many years agd |1] and are still being actively iresti-
gated [12], since they are at the base of most indoor localisation systems.oF
example, all competitors in the EVAAL-ETRI o -site competition at IPIN 2015
used some form of ngerprinting [C].

Fingerprints observed during the on-line phase are variable in lendt, because
the number of FogSenses receiving a given probe from a device is varlab in
fact probes are lost for a variety of reasons, including collisions, intderence
and insu cient transmitting power. Generally speaking, the highe r the number
of FogSenses receiving a probe, the higher the accuracy of estimation vean
possibly obtain, but the lower the number of probes we can consider asalid
samples. The trade-o between accuracy and number of usable probes depds
on the FogSense positioning, the number of devices expected in the aethe
presence of other Wi-Fi networks, the expected accuracy of the re¢ts obtained
and should be decided for each scenario, on a case-by-case basis. In thiwk,
we use a threshold of 3 for all scenarios; in other words, we only considprobes
which have been received by at least 3 FogSenses.

5.1. Interpolating the ngerprint database

Usually, building a ngerprint database starts with a survey phase during
which several calibration points are selected. The purpose is to mease, at
each point, what is the RSS observed from each of a number of APs in the area.
In our case, we need the opposite: we should measure the RSS observediie
FogSense when a probe is sent by a device located at the calibration pa@
From a conceptual and practical point of view, this change of perspectivas
unimportant, and all the procedures commonly used for ngerprinting stay the
same.

During the survey phase, the RSS values associated with each accgssint
are collected at the calibration points over a certain period of time andthen
stored in ngerprint database together with the location coordinates. During
the on-line phase, the person or object of interest is localised by coparing its
observed ngerprint to those stored in the database, looking for the mossimilar
ones. Building a ngerprint database is a time-consuming task, esp&ally for
large areas that may contain thousands of calibration samples.



In order to be commercially viable, the proposed method should reque
very little or no installation and maintenance measurements. To thisaim, we
completely remove the survey phase by pro ting from the probes senby the
FogSenses themselves, which are connected to a server via Wi-Bind therefore
occasionally send a probe request which is collected by the other FogBses.
This is enough to build a self-updating ngerprint database composed of n-
gerprints relative to the positions of the FogSenses. When using APsnstead
of FogSenses, we can prot from the probes sent by APs during routine ngh-
bourhood scanning.

A ngerprint database obtained with this survey-free procedure, however,
is too sparse for obtaining a satisfying positioning accuracy, becauste typi-
cal density of FogSenses in the environment should be low. In order tget a
denser ngerprint database, we resort to interpolation on a square grid,an idea
already proposed in the indoor localisation literature [5|6]. In particular, we
further re ne the solution proposed in [8] by exploiting several 2-D interpolation
strategies.

5.1.1. O -line phase: building the ngerprint database

The ngerprint database is automatically built with a survey-free pr oce-
dure requiring no human intervention thanks to interpolation, which in real
deployment scenarios allows for installation-free systems when thnumber and
position of APs allows it, and for automatic ngerprint update when addition al
FogSenses are needed to improve positioning accuracy.

The rst interpolation strategy we use is based onlinear interpolation over
Delaunay triangulation whose vertices are the known points, that is the FogSense
positions. Note that this strategy does not provide extrapolation, which means
that it provides no estimates for unknown points that lie outside of the convex
hull of the known points.

The second interpolation strategy isinverse distance At each unknown
point, the estimate is the mean of the values at the known points, each eighted
by the inverse of their distance to the unknown.

The third interpolation strategy is based on Kriging [5]. Kriging is an in-
terpolation strategy originally adopted in the mining industry. Suppose that
one can draw scalar samples from an unknown function of points belonging to
a given domain. In our case, the samples are RSS measurement and the paint
in domain are the locations in the area where we take measurements. Kjing
is based on the assumption that the variance of the di erence of the samjgls
taken at two di erent points is only dependent on the distance of the two points.
The function that relates the variance to the distance is calledvariogram. We
speak ofsimple Kriging when the mean of the samples is a known constant.
Ordinary Kriging can work with an unknown constant mean. If we need to
drop the constraint that the mean is constant, we resort to universal Kriging,
where one can impose a trend on the mean of samples as a function of distance
This is our case, because the RSS expressed in dB can be modelled,aasst
approximation, as a linearly decreasing function of distance. We assuad the
same parameters adopted by, [6];spherical modelwith a range of 6 m, sill set
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Figure 3: Examples of ngerprint maps generated with  inverse distance interpolation.

to 31 dBm? and nugget set to 9 dBn? and linear trend. Our experiments have
shown that these choices are in fact good enough in our scenarios.

By interpolating the measured cross-FogSense ngerprints over a igular
grid, we obtain an interpolated set of ngerprints, that is, our nal nger print
database. Figure[3 shows some interpolated RSS radio maps. For illustriamn
purposes, the maps are computed on a very small grid width of 10 cm. Each
map is seen from the point of view of one FogSense, whose position on the map
is the point where the RSS value is highest (the red point).

5.1.2. On-line phase: using the ngerprint database

During the on-line localisation phase, the ngerprint of the probe request
sent by a mobile phone is compared with the RSS ngerprints stored inthe
database, an operation which requires aneasure of distanceto be de ned. Fin-
gerprints are N -D arrays, where N is the number of probes that are received.
As stated above, we worked withN 3. We experimented with several mea-
sures of distance: 1- and 2-norm distances, di erential 1- and 2-norm disinces,
cosine distance and FreeLoc distance.

Given two ngerprints A and B of dimensionN, the most usual distance is
the Euclidean distance:

X1 1
kxk, =(  x?)z: (1)
i=1
Generalising the Euclidean distance brings us to thg-norm distance:
P X py L
iXiip =0 x{)r: )

i=1
Setting p = 2 produces the Euclidean distance,p = 1 is the Manhattan
distance. A variation on the p-dist is the di erential p-dist, where only the dif-
ferences between the measured values of each vector are considerggeci cally,
N D vector A is converted into an(N  1)D vector Ag:

11



Interpolators Proximity Parameters
Linear || InvDist || Kriging |||| Strongest ||| &NN_|[Grid width]
|
Distances 147 aleorithi
| agvorlt ms |
| Euclidean | |DEuclidean| Cosine | Me;iian |
| Freeloc, 3 | | Freeloc, 5 | Freeloc, 8 | Craiite aasaaile |

Figure 4. Generation of localisation algorithms. The ensem ble creation box is expanded in
gure 5
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We call di erential p-norm distance of vectorsA and B the p-norm distance
of vectors Aq and By. The purpose of di erential p-norm distances is to re-
move the bias given by di erent devices possibly sending probes ith di erent
transmitting power.

The cosine similarity between two vectorsA and B is a value in the interval
[ 1;1] de ned as:

A B
IiAG Ji Bii

Since we need a measure of dissimilarity, we (improperly) cattosine distance
the complement to 1 of the cosine similarity.

The FreelLoc distance is inspired by [2]. The idea is that one shouldat rely
on exact RSS values when comparing two ngerprints, but the only signicant
information comes from deciding whether the signal received by one Fog®8se is
signi cantly higher, signi cantly lower or about the same as the signal received
by another FogSense. This information is ternary, and coded as -1, 0 and +1
values. A threshold p is used to decide whether two signals are nearly equal
(jx yj < p), giving rise to a 0 or not, giving rise to a +1 or a -1. In our
computations, we used forp one of the three values 3 dB, 5 dB, 8 dB (the latter
being the value used in [2]).

Each ngerprinting vector A of length N is thus converted into a new A;
ternary vector of length N (N 1)=2, that is the number of pairs of the N
dimensions. Comparing the ternary vectors is just a matter of obtainirg their
scalar product. As in the previous case, we obtain the complement to 1 ahe
similarity:

(4)

(N D).

1 (A B= 0 5)
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5.2. Creating ensemble estimators

Using the above-described building blocks, we de ne parametri@lgorithms
for localisation, and for each we evaluate its performance in terms of accacy.
Once this is done, we turn our attention to performance in terms of robtness
across varying scenarios. We start with de nitions, we proceed to iustrating
accuracy performance, and then we the consider trading some accuracy for
robustness.

An algorithm is either the strongest algorithm or a ngeprinting algorithm.
Fingerprinting algorithms are de ned by the choice of an interpolator and a
measure of distance. The choice of the interpolator, used in the o -lie phase,
a ects the creation of the ngerprint database, while the distance is used in the
on-line phase to identify the k ngerprints in the database which are closest to
the measured ngerprint. Each algorithm is associated with several paameters
to produce a set ofmethods

For each algorithm, the parameters we consider are the interpolation grid
size (not signi cant for strongest which is not based on interpolating) and thek
value. By varying the parameters, as shown in gure 4, we produce a sprum
of alternative methods. In summary, we have used 3 di erent intepolators and
8 di erent distances, which give rise to 144 methods based on ngergnting, to
be added to 3 more methods based on thstrongest algorithm.

In order to compare the 147 methods, we choose the error median as an
accuracy performance measure. We obtain an error median for each method
applied to each of the three scenarios. Given a method and a scenarid)a error
median is computed by rst obtaining the error distribution for each d evice
of that scenario, and then merging together those distributions. This vay the
results are not dependent on the number of samples per device, whidn fact
are quite di erent, as shown in gure A.7.

Table 2 shows the performance of the 25 best methods for each scenario.
Some methods that are used in the following discussion are marked vhita
letter id, whose meaning is listed in table 3.

We don't want to choose the best method for each scenario. Rather, we wan
to nd a way to select methods that have good performance overall. © this
end, we resort to the concept ofensemble estimator which is employed in [11]
for a similar case. Ensemble estimators (ensembles for short) are dsewhen
dealing with optimisation on many discrete parameters. For example, inour case
varying the parameters creates a total of 147 methods. Just choosing thmethod
having the best performance would lead to over tting. Over tting, which means
tuning the parameters to the specic case that is being analysed, camproduce
brittle methods, that is, methods that perform well only in a speci ¢ situation.
In order to increase the robustness of the choice, and possibly the gfermance
too, we select a set (an ensemble) of methods. Once the set is chos¢he
position estimated by the ensemble estimator is de ned as the centiid of the
positions estimated by each method in the ensemble. To de ne an emsnble
estimator, a criterion is needed to select the methods composinghe ensemble.
For example, a simple criterion would be to just choose theN best accuracy
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Table 2: Median errors [m] of the best 25 methods for each scen ario. Methods are indicated
with keys listed in table 3.

CNR scenario Key CAWIT scenario Key C4WUS scenario Key

Methods 51 (a) 29 (e) 48 (C)
used for 51 (b) 30 (@ 49 (B)
reference 51 (c) 3.2 f) 50 (h)
ensembles 52 (d) 32 (9 5.0 (i)

5.3 33 5.1

5.3 34 (B) 5.2

5.3 35 5.2

5.4 35 5.2

5.4 35 5.3

54 36 (A 54 (D)

54 (e) 3.6 5.4

55 (f) 3.6 5.4

55 3.7 55

55 (A 3.7 5.6

55 (h) 3.7 (O 5.6

5.6 37 5.6

5.6 3.7 5.6

5.6 3.8 5.7

5.6 38 (¢ 5.7

56 (C) 3.8 5.7

56 (B) 3.9 5.7

5.6 3.9 5.7

5.6 3.9 57 (A

58 (D) 39 (D) 5.7

5.8 3.9 5.8

Table 3: Keys used in table 2

Ensemble Key Interpolator  Distance k  Grid width
CNR (a invdist cosine 2 2m
(reference)  (b) strongest 1 1m
(c) linear pnorm,1 1 2m
(d) invdist freeloc,8 1 2m
CAWIT (e) invdist cosine 3 2m
(reference) () invdist cosine 2 2m
® invdist cosine 2 3m
(9) invdist cosine 1 2m
C4WUS © linear cosine 3 2m
(reference)  (h) linear cosine 2 2m
(B) linear freeloc,5 1 2m
0] linear cosine 2 3m
Intersect (A) linear cosine 1 2m
(ensemble (B) linear cosine 2 2m
of choice) © linear cosine 3 2m
(D) linear pnorm,2 3 2 (m)
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- Create ensemble
Apply all 147 methods to each scenario

CNR C4WIT C4WUS
scenario scenario scenario

Sort methods by performance for each scenario =]

Intersection of top
25 methods
| from each scenario

v \ 4 \4

| Select top 4 methods and create reference ensembles

i ¢ y '

CNR C4WIT C4WUS
Intersect
reference reference reference .
ensemble of choice
ensemble ensemble ensemble

Figure 5: Generation of ensemble estimators.

performers among all the considered methods and use those as elemeafshe
ensemble. More complex criteria are possible to select the metlds that are
part of an ensemble, see [4,11] for more in-depth discussion.

The criterion we choose is depicted in gure 5 and is quite simplewe select
the methods that appear among the best performers in all three scenass, that
is, a set of methods which is the intersection of the three sets wise accuracy
performance is listed in table 2. The selected methods compose tlietersection
ensemble they are marked with upper-case letters, de ned in table 3.

In order to better evaluate the performance of the intersection ensmble,
we compare it against three additional reference ensembles, each tuned on a
di erent scenario. We create the CNR ensemble using the 4 method&aving
the best accuracy performance in the CNR scenario, and similarly for CAWT
and C4WUS. The methods composing these 3 scenarios are marked with lowe
case letters in table 2. Note that the top performer methods are di erert in each
scenario. For example methoda is the best for scenario CNR and the second
best for the CAWIT, but it is not even among the top 25 methods for C4WUS.
Similar considerations apply for method b, which is the best in scenario CNR,
but not in the top 25 methods for C4AWIT and C4WUS.

5.3. Experimental results

Table 4 shows the accuracy performance of the threeeference ensemble
methods, each specialised for a di erent scenario; on the diagonal we st the
median localisation error of ensemble CNR, ensemble C4AWIT and ensenél
C4AWUS applied respectively to CNR, CAWIT and C4WUS scenarios. As ex-
pected, the results shown on the diagonal are not worse than the top mettibfor
each scenario that are listed in table 2, which con rms the e ectiveress of the
ensemble approach in terms of accuracy performance. For example, therer
of ensemble CNR applied to scenario CNR is 4.3 m, while the best metlibin
scenario CNR has error 5.1 m, and similarly for CAWIT and C4WUS.
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Table 4: Median errors for the 4 ensembles in the 3 scenarios

\ Ensemble \ Scenario CNR  Scenario CAWIT Scenario C4WUS

Reference CNR 4.3 3.7 5.6

ensembles| CA4WIT 53 2.9 7.2
C4WUS 5.6 3.9 4.2

Ensemble

of choice | Intersect 55 3.7 4.7

Ensemble Scenario CNR  Scenario C4AWIT Scenario C4AWUS
1 1 1

0.75 /—-’ 075 VS 075 /

CNR OS5 [ " p OS5 A o5 A

(reference) 0.25 / """"" 0.25 / """"" 0.25 / """""
1 1 1

0.75 [ /' 075\ 075 /

C4WIT o5 A o051 A OS5 [ A

(reference) 0.25 / """"" 0.25 / 0.25 / """"
1 1 1

0751/ 0.75 [ 0.75 /

C4WUS 05 [ o5 g OS5 fA

(reference) 0.25 / """"" 0.25 / """"" 0.25 / """""

1 1 1

Intersect UICH B A 075 | 075 /

(ensemble 05 [yl 0.5 [ N A

of choice) 025 f| 0.25 fof] e o2s Ll
0

0 0
0 5 10 15 0 5 10 15 0 5 10 15
Figure 6: Cumulative density distribution of errors for the four ensembles and the three

scenarios.
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However, when we apply the reference ensembles to scenarios iniahhthey
are not specialised, performance drops signi cantly. Taking scenari€NR as an
example, the error grows from 4.3 m when using the specialised ensbla CNR
to 5.3 m and 5.6 m when using the other reference ensembles, as shoinrtable
4. We take this as indication that the reference ensembles are not robtigcross
scenarios.

We nally analyse the performance of the ensemble of choice, thmtersection
ensemble which is built with the purpose of being robust across scenarios, tat
is, of giving reasonably good results in all scenarios. Thatersection ensemble
is the intersection of the three sets of the 25 best-performing méiods in each
scenario. Its member methods are marked with upper-case letters A{Din table
2. The last row of table 4 shows the performance of the intersection eesnble
applied to the three scenarios CNR, C4WIT and C4WUS. We observe that, as
expected, while the results of the ensemble of choice (in bold) areorse than
those of each reference ensemble for its own specialised scenatinderlined),
they are generally good overall.

Moreover, and most importantly, the performance of the ensemble of chae
can be considered satisfactory for the intended purpose of this work, eaning
that it is indeed feasible to use the experimented strategy for cravd localisation.
In fact, median errors ranging from 3.7 m to 5.5 m are acceptable for crowae
areas such as a shop inside a mall, the space in front of a shop window, a tiag
room, a bathroom area, a reception desk.

A more detailed overview of the numeric results in table 4 is givenn gure 6,
where the cumulative density distribution of error is depicted for all ensembles
applied to all scenarios.

Results are consistent with the characteristics of the three scearios: as
expected, accuracy is higher for CAWIT. This can be explained by lookig at 3:
RSS varies a lot between di erent areas in the C4AWIT map, while the ptture of
RSS in the other two scenarios is more homogeneous. In other words, we leav
more information to exploit in C4WIT than in the other scenarios, and this is
re ected in a higher accuracy for C4WIT.

Another interesting observation is that the accuracy performance we obarve
is not so far from the state of the art in Wi-Fi indoor localisation. While a direct
comparison is not possible, because we work with the little data prowded by
devices occasionally sending probes in small environments with aw number of
FogSenses, it is interesting to note that during the EVAAL-ETRI competition at
IPIN 2015 [9] one of the tracks was dedicated to o -line indoor localisation @ne
exclusively with Wi-Fi information. The results obtained by competitors vary
from a median of 4.6 m (the winner) to a median of 7 m. These results bent
from tracking techniques for error reduction, which cannot be usedn our case,
where tracking is impossible. We take these numbers as a hint thathe methods
proposed in this paper are indeed promising, since the gures measuleduring
IPIN competitions are taken in controlled and scienti cally accurate conditions,
rather than by the system authors themselves in their own laboratories.
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6. Conclusion

To the best of our knowledge, the literature lacks experimental inestiga-
tions on using passive detection of Wi-Fi probes produced by mobile @vices
for indoor localisation purposes. We set up an experimental environnt@ and
we measure the performance of localisation methods that require ndier instal-
lation measurements nor maintenance. Results are shown to be robustith
respect to three indoor settings that exhibit quite di erent ch aracteristics.

We derive some key takeaways as well as some considerations from this-ex
perimental campaign. First, the architecture we proposed is easily lable, in
the sense that in case the already-deployed APS are not enough to get sdtigg
positioning accuracy, it is possible to deploy additional sni ers, without any sys-
tem recon guration. Second, our approach is survey-free, meaning thattidoes
not require the usual con guration work needed for Wi-Fi indoor localisation
systems, that is to survey the environment, to select the pointswhere to gather
the RSS values and nally to collect data with one or more sensing devies. We
avoid all these steps by exploiting the probes sent by the APs and theossible
additional sni er themselves.

The results obtained with the described ensemble estimator areniour opin-
ion, remarkable. In fact, even if tracking cannot help with error reduction, the
median errors of the intersection ensemble are directly comparable ith the re-
sults of some of the best localisation algorithms based on pure Wi-Fi ngeprint,
such as those that were presented and, most importantly, independely tested,
during the EVAAL-ETRI 2015 competition.

Exploiting Wi-Fi probes promises to be a viable and cheap strategy for
indoor localisation of devices. The method we describe can be the nrabuilding
block of systems that sample the presence of people in a given area, a kahat
we call crowd localisation. Future work will need to build and expeiment with
such systems in real-life environments.

Appendix A. Measurements

Figure A.7: Top 10 known devices by number of probes.

18



Figure A.8: Probability distribution of RSS values of known devices.

Figure A.9: Time series of captured probes in a week's time, 2 5-minute intervals.
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Figure A.7 shows number of probes gathered by the most talkative known
devices. Note how the number of probes produced can vary considerablye-
tween devices, as already discussed. We account for this di erenée number of
collected probes when measuring performance, in order to avoid weitjhg one
device more than others.

Figure A.8 illustrates the RSS distribution for the known devices The three
distribution have dierent width, as highlighted by their standar d deviation
(shown in the gure). This is consistent with our previous observations on the
di erence of the three scenarios and is one more con rmation that CAWIT is
the scenario where the FogSenses gather the most information.

Future work may investigate the usage of this information to assist the -
ployment in di erent environments, especially for deciding whether the already-
installed APs are su cient as sning devices to gather probe requests. In
principle, adding FogSenses in the area to improve localisation accacy could
make sense unless this addition makes the standard deviation too nano

Finally, gure A.9 shows the number of probes received in 25-minute mtervals
as time series covering one week. It is apparent that, in CNR and C4WIT the
number of captured probes increases during the working hours and itebps down
during o -work hours and weekends. In fact, the known devices are lafpps and
smartphones owned by employees at the three locations, the probesigy emit
well reproduce their working rhythms. At C4AWUS such pattern is less clear for
two reasons. First, most of the known devices are static and always comtted to
a local stable Wi-Fi network, which reduces the number of probes sg¢. Second,
they are not owned by the employees, and are therefore working also duag
o -hours and weekends.
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