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Abstract—Indoor localization applications that involve Wire-
less Sensor Networks (WSNs) identify the target position by
measuring the Received Signal Strength (RSS), the Time of
Arrival (ToA), the Time Difference of Arrival (TDoA) or the
Angle of Arrival (AoA). Of these, the most promising for low-
cost applications are those based on measures of the RSS,
which exploit the relationship between RSS and the distance, or
more reliably the relation between the multi-path interference
(shadowing) and the position of the target. These methods
work with WSNs based on Wi-Fi, Bluetooth and ZigBee sensor
technologies.

In this paper we concentrate on device-free RSS-based indoor
localization methods. These methods, which have generated much
research interest in the last few years, are now starting to
hit the market. Specifically, the purpose of this paper is to
assess the performance improvements of a Variance-based Radio
Tomographic Imaging technique, when scanning various radio
channels with respect to using only one, the latter being the
“minimum introduced interference” option.

Moreover, in this paper we will discuss in which application
scenario the multi-channel scanning technique is usable and
appropriate. The experimental data used for target localization
are captured by wireless sensors deployed in the localization area
and the localization error metrics include the mean square error
and percentiles of the error distribution. Specifically, we aim to
study the localization error reduction obtained by using multiple
ZigBee channels, with respect to using a single channel.

I. INTRODUCTION

RELIABLE, accurate and real-time indoor positioning ser-
vices and protocols are required in the future generation

of communication networks [1]. A positioning system enables
a mobile device available for positioning-based services such
as tracking, navigation or monitoring. Moreover, information
of the users position could significantly improve the perfor-
mance of wireless networks for network planning [2], load
balance [3], etc.

Localization and tracking of objects can be achieved by
means of a large number of different technologies, however
only few of them are suitable for Ambient Assisted Living
(AAL) applications, since they should be non-invasive on the
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users, they must be suited to the deployment in the user houses
at a reasonable cost, and they should be accepted by the users
themselves [4], [5].

Considering these constraints, a promising technology is
based on Wireless Sensor Networks (WSN), due to their low
cost and easy deployment. Within WSNs, it is possible to
estimate the location of a user by exploiting the Received
Signal Strength (RSS), the Time of Arrival (ToA), the Time
Difference of Arrival (TDoA) or the Angle of Arrival (AoA).

Of these, the most promising for low-cost applications are
those based on RSS measures, which is a measure of the power
of a received radio signal that can be obtained from almost all
wireless communications devices we know of.

The RSS measured among fixed devices (whose position
is known) and mobile devices (carried by the user) is lever-
aged by algorithms that estimate the coordinates of the user
positions. In a smart environment, where the ambience is in-
strumented with sensors and wireless communication devices,
the marginal cost of implementing an RSS-based localization
system can be very low, as it can leverage the existing installed
hardware.

In this paper, we consider one device-free RSS-based indoor
localization method, that is, Variance-based Radio Tomogra-
phy Imaging (VRTI) [6]. Here, ”device-free” means that a
person does not need to carry or wear any wireless sensor or
device. Rather, these systems are based on a large set of small
wireless devices spread over the area of interest in order to
create a dense mesh, and exploit the RSS observed by each
device on the radio links connecting it to other devices. A
user moving within the area modifies the RSS pattern in a
way that depends on his location; radio imaging therefore
exploits the RSS measurements observed along the inter-
device links to obtain a reconstruction of the object trajectory.
Two working modes can be identified for these devices: either
they dedicate some power and channel occupancy to sending
ad hoc localization probing packets, or else they exploit data
packets sent by other applications and measure their RSS
for localization purposes. Using a single radio channel for
scanning is friendly to other devices in the environment, both
in the case of dedicated localization devices and in the case
of piggy-backing on different applications. In the former case,



having a dedicated channel avoids interference and channel
occupancy for other applications in the same environment. In
the latter, since no ad hoc packets are generated, there is no
additional channel occupancy and energy drain.

On the other hand, results for a similar method, that is
Shadowing-based RTI, showed that sending probing packets
on multiple channels gives an advantage in terms of local-
ization accuracy with respect to using a single channel [7].
This means that at least in some device-free systems there
is a trade-off between minimum disturbance and maximum
accuracy when choosing between single- and multiple-channel
localization. Here we use the same criterion applied to VRTI
[8], in order to measure if any performance improvements are
observed with this method.

The remainder of the paper is articulated as follows: Section
II presents the related work; Section III discusses the scenario
and the experimental setup; Section IV describes the detail
of the tomographic localization algorithm, while Section V
presents some preliminary results; concluding remarks are
given in Section VI.

II. RELATED WORK: DEVICE-FREE LOCALIZATION
TECHNIQUES

Device-free radio localization methods based on RSS as
provided by small and inexpensive communications sensors
is a field that has gained growing interest in the last few
years. Indeed, previous works show that changes in link path
losses can be used to accurately estimate an image of the
attenuation field, that is, a spatial plot of attenuation per unit
area [9]. Experimental tests show that in an unobstructed
area surrounded by a network of nodes, the estimated image
displayed the positions of people in the area. Indoor radio
channel characterization research demonstrates that objects
moving near wireless communication links cause variance in
RSS measurements [10]. This knowledge has been applied
to detect and characterize motion of network nodes and
moving objects in the network environment [11]. These studies
focus mostly on detection and velocity characterization of
movement, but do not attempt to localize the movement as
the works presented in this section.

Device-free localization systems are characterized by the
absence of any kind of devices wear by the user which
actively emit any useful signal. These localization systems are
particularly useful in medical, data-mining or ambient assisted
living applications where a huge number of person need to
be localized and tracked, or in security, military applications,
where the users don’t want to be localized.

These systems are based on large set of small wireless
devices spread over the area of interest in order to create a
dense mesh, and exploit the RSS observed by each device
on the links connecting it to other devices. A user moving
within the area modifies the RSS pattern in a way that depends
on his location; the algorithms exploit the RSS measurements
observed along the inter-device links to obtain a reconstruction

Fig. 1. Principle of device-free localization systems.

of the object trajectory (figure 11). As far as we know
four different device-free localization techniques are already
published in the literature: Radio Imaging (RI) [12], Massa’s
method [13], REAAL method [14], and Variance-based Radio
Tomography Imaging (VRTI) [6].

In [12] the authors propose an approach where both the
average path-loss and the fluctuations of the received signal
strength induced by the moving target are jointly modeled
based on the theory of diffraction. The device-free localiza-
tion problem is cast into a Bayesian framework based on a
stochastic model that allows to describe the target-induced
RSS perturbations and optimally exploits all the location infor-
mation coming from attenuation, random fading and mobility
model. A stochastic model is proposed for relating the RSS
measurements over each link to the object position. Since the
presence of the target is shown to affect both the attenuation
and the random fluctuations of the received power, a log-
normal model is defined where the RSS mean and variance
are expressed as functions of the target location. The increase
of path-loss and power fluctuation induced by the moving
target are described by exploiting the theory of diffraction:
a closed-form analytical model is derived, tailored for the
specific localization problem and validated on experimental
data.

In [13] the measurement of the perturbation effects on the
other receiving nodes is dealt with a suitable inversion strategy
to determine the equivalent source modeling the presence of
the target/scatterer generating the perturbation itself. By virtue
of the fact that the number of nodes in a WSN can vary and
the need to have a simple and flexible tracking/localization
method allowing real-time estimates, a learning-by-examples
(LBE) strategy based on a support vector machine (SVM) is
used.

1Taken with permission of Neal Patwari from http://span.ece.utah.edu/radio-
tomographic-imaging?q=radio-tomographic-imaging



Fig. 2. REAAL algorithm: AAL compliant device-free localization system.

The authors in [14] propose a method based on identify the
signal fading between two anchors. Indeed, a user crossing the
Line-of-Sight (LOS) link between two anchors causes signal
fading through the link. Identifying power reduction on a given
radio link can be exploited to know the area where the user
is going into. As shown in figure 2, if the user enters the
room and the detection algorithm detects that the LOS link
between anchors 1 and 2 is affected, the localization system
infers that the user is entering the subarea A1, and will indicate
the coordinates of the centroid of that subarea. This method is
particularly indicated for AAL environment where good user
acceptance is essential since it is able to estimate in advance
the maximum error and it works even with a small number of
installed devices.

The method proposed in [6] takes advantage of the motion-
induced variance of received signal strength measurements
made in a wireless peer-to-peer network. Indeed, using a mul-
tipath channel model, the authors show that the signal strength
on a wireless link is largely dependent on the power contained
in multipath components that travel through space containing
moving objects. Exploiting measurements from many links in
the wireless network, the authors present a statistical model
relating variance to spatial locations of movement and used
as a framework for the estimation of a motion image. From
the motion image, the Kalman filter is applied to recursively
track the coordinates of a moving target. The achieved mean
accuracy is usually around half meter, which is enough for
AAL applications, where 50 cm can be considered acceptable
[4], [15]. We chose this method to asses the performance
improvements when scanning several radio channel since it is
the most promising device-free localization algorithm. A clear
and more exhaustive description of this algorithm is given in
section IV.

The two main drawbacks of these device-free methods are
the large number of devices that must be deployed in the
environment and the incapability of discriminating among

users. Association with a sufficiently smart tracking system
may help with the first problem, while a complete solution
is only possible in association with other techniques (usually
non device-free, like RFID).

III. EVALUATION SCENARIO

In this section we introduce the software, the hardware
devices and the scenario used during our analysis. The RSS
values are collected through a WSN composed by N nodes in
the following named as anchors.

A. Software Tool

A modified version of token-passing protocol, named as
Spin [16], is used to schedule node transmission, in order to
prevent packet collisions and maintain high data collection
rate. When an anchor is transmitting, all other anchors receive
the packet and perform the RSS measurements. The payload
of the transmitting packet is the set of RSS values between
the transmitting node and the other sensors sampled during
the previous cycle. This packet has been received also by the
base station along with the nodes unique ID. The base station
collects the payload and forwards this data to a laptop for
storage and later processing. The RSS values are acquired for
a given channel c for all the nodes n = 1 . . . N in the network,
i.e., when the last node of the network has transmitted by using
the channel c, the first sensor node starts with a new cycle by
using a new channel. The data collected from each sensor pair
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Fig. 3. Software toll used in the measurement campaign.

(ai, aj) in the following called link, are formatted as a string
with the following fields: the identifier of the receiver (ID),
the RSS values measured between the receiver and the others
transmitting sensors, the timestamp at which the string was
acquired, and finally the channel used for the acquisition. It is
worth noting that in the literature taken into account for this
paper the authors drop the assumption on the reciprocity of
the links.



B. Hardware

The WSN used in this work is based on the IRIS Motes
wireless sensor nodes, produced by Crossbow [17]. This
hardware is based on the high performance RF transceiver,
AT86RF230, operating at 2.4GHz compliant with the IEEE
802.15.4 and ZigBee standards. The hardware was pro-
grammed using the TinyOS operating system, specifically
designed for low-power wireless devices. The AT86RF230
can return the instantaneous RSS and the average RSS val-
ues through two registers named RSS Val and ED register,
respectively. The first one is a 5-bits bit register, the second
one is a 8-bit register.

C. Experimental Setup

The RSS values were collected in the presence of a human
target (from now on named simply target) in a set of given
positions. The localization area is about 4.8 x 3.6 meters where
20 sensors have been placed for the data acquisition. The
measures are performed on a set of 1, 2 and 4 channels.

Each link is sampled with a frequency between 5 and 8 Hz,
depending on the parameters used in the algorithm described
in section IV. The target movement was a sort of serpentine
as shown in Figure 4 at a constant speed of about 0.2 m/s.
The RSS data collected during each experiment consist of
more than 5600 cycles, corresponding to more than 112000
RSS measures among anchors. Furthermore, no one other
than the user to be localized is present in the area during
the experiment.

The localization area of each scenario was marked to create
a lattice, as shown in the figure 4, where the black squares
are the WSN nodes. Through this lattice the position of the
target has been evaluated, and comparing estimated position
with the target’s position in the lattice the localization error
distribution is evaluated. From the error distribution the root
mean square error (RMSE), the 75th and 90th percentile of
the localization error are calculated.
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Fig. 4. Environment setup: N=20 anchors positioned near the room walls,
at about 70 cm from the floor, and the path followed by the target.

IV. ALGORITHM

The algorithm is an implementation of the Variance-based
Radio Tomographic Imaging (VRTI) method [9]. In the RTI
algorithm the data used for the imaging are the RSS levels
collected for each pair of wireless devices of the wireless
sensor network deployed within the localization area.

The VRTI algorithm uses the path loss of the radio links
between many pairs of nodes in a wireless network, in
order to image the attenuation changes that occur within the
localization area. In general, when an object moves into the
localization area, the signal strength of the link involved in
the target path will, on average, experience higher shadowing
losses. VRTI is an inverse problem based on the path loss on
the intersecting links, by which the image of the attenuation
within the localization area is reconstructed to infer the loca-
tion of the target. In the following we shortly describe how it
works.

Consider the set of anchors A = a1, a2, · · · an with known
positions on the localization area; all the anchor pairs identify
the L links of the wireless sensor network. In the localization
area, a lattice with P pixels is introduced, and for each pixel
its coordinates within the lattice are evaluated.

The first step for the evaluation of the attenuation image
over the localization area consists in evaluating the matrix of
the variance weighting, which links the RSS’s variance of the
link to the variance over the pixels, as shown in equation (1).

s = Wx + v (1)

In equation (1) x is the image vector that holds the values
per pixel of the RSS’s variance, s is the vector that holds the
measured RSS’s variance per link, v is the noise vector, and
W is the matrix representing the variance weighting for each
pixel and link.

The entries of the matrix W are calculated by assuming
that the signal strength between nodes pair decays with the
inverse square of the distance between two nodes, and that the
movement of the target influences the set of pixels included
in the ellipse shown in figure 5, whose foci are the nodes ai
and aj , while λ, defined as dlp(1) + dlp(2)− dl, controls the
ellipse eccentricity. Equation (2) shows how to evaluate the
entries of the matrix W.

Wlp =
1√
dl

{
Ψ dlp(1) + dlp(2) ≤ dl + λ
0 otherwise (2)

In equation (2) dl is the distance of the link l between
node pair (ai, aj), dlp(1) and dlp(2) are the distances from the
center of pixel p to the two respective nodes location on link l,
and Ψ is a normalization parameter. For the scenarios analyzed
in this paper some measurements have been performed to tune
the parameters Ψ and λ, and the optimized values are 1 [dB]

2

and 1 m, respectively.
The output of the implemented VRTI algorithm is the vector

image x of equation (1). The vector x can not be calculated
through the equation (1) because it is an ill-posed inverse



Fig. 5. Attenuation Area.

problem, hence, no unique solution to the least-squares for-
mulation exists. The solution can be determined only through
the resolution of a regularization problem; here, Tikhonov’s
least squares regularization problem was used [18], which can
be formulated as in equation (3).

x̂ = argmin
x

1

2
||Wx− s||2 + α||Qx||2 (3)

The equation of the regularization problem involves the
matrix Q and the parameter α that are the Tikhonov matrix
and the Tikhonov parameter, respectively. In many cases, this
matrix Q is chosen as the identity matrix Q = I, giving
preference to solutions with smaller norms. In other cases,
low-pass operators (e.g., a difference operator or a weighted
Fourier operator) may be used to enforce smoothness if the
underlying vector is believed to be mostly continuous. This
regularization improves the conditioning of the problem, thus
enabling a numerical solution. The parameter α affects the
convergence of the algorithm and can be evaluated by the
numerical method described in [18].

In our case, the measured data s are subject to errors and
these errors can be assumed to be independent with zero mean
and standard deviation σv. Moreover, the a priori uncertainties
of the solution x can be taken into account through the
covariance matrix C. Then the solution for the regularization
problem can be formulated as shown in equation (4), in terms
of the a priori information C and the noise variance σ2

v [18]
[6].

x̂ =
(
WTW + σ2

vC
−1

)−1
WT s (4)

Cprpq = σ2e−dprpq/δ

Precisely, the correlation between the attenuation over the
pixel set can be calculated using an exponential spatial decay
law. In this case, the variable dprpq is the distance from center
of pixel pr to the center of pixel pq , σ2 is the variance of pixel
attenuation, and δ is used to determine the desired amount
of smoothness in the image. Hence equation (4) achieves the

image reconstruction. For the scenarios analyzed in this paper
the values of the parameters σ2 and δ have been set to 0.3
and 3, respectively.

Then, the second step of the algorithm is to evaluate the
solution of the regularization problem as described above.

The vector x̂ is used to estimate the target coordinates,
selecting its maximum, and calculating the coordinate of the
pixel with the maximum degree of attenuation. So, the final
step of the algorithm is to show the image reconstruction
x̂ through a color map, and the estimated coordinate of the
target position compared with the true position, depicted by a
circle and a cross respectively, as shown in figure 6. The color
degrees of the figure indicate the different levels of attenuation
due to the target movement over the lattice pixels.

Fig. 6. VRTI Example.

V. RESULTS

We used several criteria to try and compare the performance
of single- versus multi-channel, as detailed in the following
four sub-sections.

A. Simple and bare comparison

Here we simply compare the performance of measurements
done in single-channel mode on four different channels, with
measurements done in bi-channel and quadri-channel mode,
for a total of six cases.

The packet generation rate is around 55 pkt/s, which means
one complete round of the 20 transmitting nodes in about
345 ms, or about three complete rounds per second. The
window over which the RSS variance is measured is set at
3 s and 5 s, which means that the same measured data are
used twice, and two sets of results are obtained. Note that the
speed of the target is around 0.2 m/s meaning that, space-wise,
the variance window is respectively 0.6 m and 1 m long for



Fig. 7. Main comparison: single-channel performance for channels 14, 17,
21, 24 compared with bi-channel (17, 25) and quadri-channel (12, 16, 20,
24). 3 s and 5 s variance windows.

the two cases. In general, we expect to get a localization error
not significantly smaller than the window size.

As shown in figures 7, we have found little difference
between single-channel, bi-channel and quadri-channel mea-
surements. The performance metrics we used are the RMSE
(root mean square error) and two percentiles (75 and 90) of
the localization error distribution. As an example, figures 8
show some typical error distribution for our experiments.

Note that the comparison in figure 7 is not rigorous, because
it is based on six different measurements. This means that
interference from radio sources may be different in the six
measurements. Additionally, the actor’s movement may be
slightly different in the six measurements and people moving
in nearby rooms may also have differently influenced the
measurements. These issues are tackled in the next subsection.

B. Filtering comparison

In order to remove the effect of possible differences between
different measurements when comparing single- to multi-
channel performance, we make a comparison that uses a single
bi-channel measurement (the same as the one depicted in
figure 7) and filter it in three different ways like shown in
figure 9.

The purpose is to extract from a single measurement set a
bi-channel trace and two single-channel traces, all of them with
the same number of samples per second, so that a comparison
among them is significant.
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Fig. 11. Rigorous comparison: filtering bi-channel and single-channel from
a bi-channel measurement. 3 s and 5 s variance windows.

Qu 1 Qu 2 Qu 3 Qu 4 Si 12 Si 16 Si 20 Si 24
0

0.5

1

1.5

2

2.5

m
e

t
e

r
s

 

 

RMSE

75−Th Percentile

90−Th Percentile

Fig. 12. Rigorous comparison: filtering quadri-channel and single-channel
from a quadri-channel measurement. 10 s variance window.

We used the same procedure starting from a quadri-channel
measurements that we filtered in five different ways (see figure
10).

We should consider this filtering procedure as the most
rigorous of the tests we made. Its main drawback is that the
number of samples per second is reduced by two times in the
bi-channel case and by four times in the quadri-channel case,
which stretches the RTI algorithm ability to its limits. Figures
11 and 12 show the resulting comparison.

Again, we do not perceive any significant difference when
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(c) Bi-channel
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Fig. 8. Error distribution for some different experiments.

Measured:
ABABABABABABABABABABABABABABABABABABABAB

Filtered:
Bi 1: A__BA__BA__BA__BA__BA__BA__BA__BA__BA__B
Bi 2: BA__BA__BA__BA__BA__BA__BA__BA__BA__BA__
Si17: A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_
Si25: _B_B_B_B_B_B_B_B_B_B_B_B_B_B_B_B_B_B_B_B

Fig. 9. The original bi-channel measurement on channels 17(A) and 25(B) and three different ways of filtering it.

Measured:
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD

Filtered:
Qu 1: A____B____C____DA____B____C____DA____B__
Qu 2: B____C____DA____B____C____DA____B__A____
Qu 3: C____DA____B____C____DA____B__A____B____
Qu 4: DA____B____C____DA____B__A____B____C____
Si12: A___A___A___A___A___A___A___A___A___A___
Si16: _B___B___B___B___B___B___B___B___B___B__
Si20: __C___C___C___C___C___C___C___C___C___C_
Si24: ___D___D___D___D___D___D___D___D___D___D

Fig. 10. The original quadri-channel measurement on channels 12(A), 16(B), 20(C) and 24(D) and five different ways of filtering it.
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Fig. 13. Discarding channel information: treating multi-channel data as if
they were single-channel do not significantly worsen the performance.

comparing single- and multi-channel performance.

C. Removing multi-channel information

As one more criterion to check for the importance of
measurements over different channels, we took a quadri-
channel measurement and removed the channel information.
In practice, we made the measurements on four different
channels and run the algorithm on the complete data, including
channel information, as well as on the data where the channel
information has been removed (so all the samples appear to
have been logged on the same channel). Before making the
comparison, we cared about removing the mean value indi-
vidually from each channel’s data, in order to avoid spurious
variance introduced by mixing different channel’s data. The
results are depicted in figure 13 and, again, do not indicate any
significantly worse performance when the channel information
is discarded.

D. Treating single-channel as multi-channel

As a last test, we “invented” multi-channel information and
added it to single-channel measurements. This test is a sort of
security check that we did to verify that our implementation
of the VRTI algorithm did not introduce any artifacts that
advantage the single- or the multi-channel measurements. In
figure 14 we observe a small improvement when “inventing”
channel information.

VI. CONCLUSION

Measurement results relevant to an RTI-based localization
technique have been presented and discussed. Main goal was
showing whether using multiple radio channels for collecting
RSSI samples is advantageous with respect to using only one
frequency channel, as far as variance-based RTI localization
is concerned. We used several criteria to compare the perfor-
mance of single- versus multi-channel approach in order to
evaluate all the possible solutions and reference scenarios. We
conclude that using multiple channels may be more complex,
especially if the packets are not explicitly generated for the
purpose of localization, but just for communication purposes.
In the latter case, the channel is constrained by communication
protocols because of interference criteria or more generally
by spectrum sharing criteria. Measurement results show that
in this scenario is not convenient the multi-channel approach
when using variance-based RTI localization algorithm, since
there is not a significant improvement to justify the more
complex system. Indeed, the main advantage of RSS-based
localization systems is that they are totally free in smart
environments, where the ambient is already instrumented
with sensors and wireless communication devices that can
be leveraged by the localization systems. Any change in the
communication protocol, such as multi-channel scanning, are
expensive and it brings small benefit. On the other hand,
if an environment need to be sensorized with new devices
with the localization purposes, then we can dedicate some
power and channel occupancy to sending ad hoc localization
probing packets in multi-channel way in order to improve the
localization accuracy with respect to single-channel approach.
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