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Abstract— Every year, for ten years now, the IPIN competition has
aimed at evaluating real-world indoor localisation systems by test-
ing them in a realistic environment, with realistic movement, using
the EvAAL framework. The competition provided a unique overview
of the state-of-the-art of systems, technologies, and methods for in-
door positioning and navigation purposes. Through fair comparison
of the performance achieved by each system, the competition was
able to identify the most promising approaches and to pinpoint the
most critical working conditions. In 2020, the competition included
5 diverse off-site off-site Tracks, each resembling real use cases
and challenges for indoor positioning. The results in terms of
participation and accuracy of the proposed systems have been
encouraging.
The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-
mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive
achievements.

Index Terms— Indoor Positioning and Navigation; Evaluation; Smartphone-based positioning; Foot-Mounted IMU; Posi-
tioning in Industrial Scenarios and Factories; Vehicle-positioning.
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I. INTRODUCTION

THE International conference on Indoor Positioning and

Indoor Navigation (IPIN), born in 2010, has been a ref-

erence for researchers and practitioners interested in systems,

methods, techniques and technologies for indoor positioning

and indoor navigation. In fact, estimating the location of a
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mobile target still represents a challenging task in indoor en-

vironments. While solutions based on Global Navigation Satel-

lite System (GNSS) are successfully used outdoor, pinpointing

the location of an indoor target requires the adoption of

technologies that most often cannot exploit satellites because

indoor obstacles, walls and, most of all, ceilings are all factors

that significantly reduce the strength of satellite signals. Indoor

localisation systems, be they targeted at personal navigation or

other purposes, heavily rely on the use of a wide variety of

sensors. This is in sharp contrast with outdoor localisation,

which relies only on GNSS radio signals, at least as far as

consumer-grade applications are concerned.

Since its inception, IPIN’s core topics have been low-

level hardware and software techniques for positioning and

navigation. In the last few years a growing interest has been

observed in topics regarding system evaluation, standardisation

and interoperability. In fact, reaching a wide consensus on

the evaluation metrics for these systems is a fundamental step

towards filling the gap between prototypes and commercial

systems. In this paper we are particularly interested in testing

and evaluation of systems and, as a showcase, we fully

describe the IPIN 2020 competition. While the competition

usually benefits from the attendance of the congress, in 2020

the competition was a solo event which nonetheless attracted

95 attendees to the final event, which was held online.

Past editions of the IPIN competitions were organised by

hosting two different kinds of Tracks, namely on-site and

off-site. In the on-site Tracks, competitors demonstrate their

system by performing an assigned test in a given place.

An actor carries the competing system while walking in

and between multi-floor buildings. The system shall provide

position estimates in real time using local data processing

on opportunistic signals, without any ad hoc infrastructure.

In off-sites Tracks competitors calibrate their algorithms in

advance using a ground-truth reference database provided by

the committee, and compete using new unreferenced data. Due

to worldwide travel restrictions, the 2020 competition only

hosted off-site tracks for active indoor positioning systems.

This paper contains organisational aspects and highlights

the choices taken by the organisers. The core part of the

paper is the description of the competing systems. This edition

provided five off-site Tracks: Smartphone, Foot-mounted IMU,

xDR in manufacturing, On-vehicle smartphone and Channel

impulse response. Each Track is explained in a dedicated

section which also contains contributions and system descrip-

tions authored by the competitors. As a follow-up to [1], [2],

this work provides a unique overview on the state of the

art of systems, technologies and methods for indoor posi-

tioning and navigation purpose. Through a fair comparison,

the performance achieved by each system in a real-world

scenario helps understanding which are the most promising

approaches, under which working conditions. Comparison

is performed according to the Evaluating Ambient Assisted

Living (EvAAL) framework [3].

The paper is structured as follows. Section II summarises

the history of the IPIN competition and highlights possible

future directions for the next editions. Section III is an

overview of the five Tracks and their commonalities, which are

founded on the EvAAL framework. Sections IV to VIII report

the characteristics and final results for each Track and the

detailed descriptions of most competing systems. Section IX

is an attempt at identifying lessons to be learned from the

practical experience of competitors: even if the competition

was off-site, the algorithms used were stressed in a challenging

and competitive environment, which offered insight to both

competitors and attendees.

II. PAST, PRESENT AND FUTURE DIRECTIONS

Research in the area of indoor positioning and navigation

in the last decade has elicited a strong interest from both aca-

demic and industrial communities. We expect indoor Location-

based services (LBS) to experience significant growth and evo-

lution and to be commonly available on commercial devices

in the future

Although impressive advances in the field of algorithms for

indoor localisation and tracking have been achieved, evaluation

frameworks are missing. Under this respect, the EvAAL

framework was a pioneer initiative devoted to compare, with a

rigorous methodology, the performance of indoor localisation

systems in real-world, non-trivial settings. Here we summarise

the 10-year-long journey of the EvAAL framework, from the

first EvAAL competition in 2011 to the recent IPIN 2020

competition, and we give a look at the next edition of IPIN

scheduled for late November 2021.

The EvAAL framework has been designed to test and com-

pare the performance of indoor localisation systems, following

a rigorous approach. It consists of four core criteria plus four

extended criteria, the latter being desirable ones which should

be applied as far as possible [3]. The core criteria, which are

necessary to define a competition as conformant to the EvAAL

framework, are:

1) Natural movement of an actor: an actor walks with

natural speed and attitude.

2) Realistic environment: the walking path is set in a

realistic setting; EvAAL competitions were done in a

living lab, IPIN competitions in wider settings, like a

congress centre, a university building, a shopping mall.

3) Realistic measurement resolution: final error measure-

ments below 50 cm in space and 0.5 s in time should

be considered as null, when indoor people’s movement

are considered; when the actor walks, the test should

be considered adequate if his/her time and space errors

when passing on the test points are not greater that the

above figures, which is easy for a trained person.

4) Third quartile of point Euclidean error: the accuracy

score is based on the third quartile of the point error.

Applicability of extended criteria to IPIN 2020 is discussed

in Section III.

Table I is an overview of the size of past competitions.

While the IPIN competitions aim to compare systems based

only on their accuracy performance, the early EvAAL editions

were characterised by a richer set of goals, including the

deployment complexity of the solution; the time required

to calibrate and configure the system; the impact of the

system in terms of the end-user’s perception. These indicators
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TABLE I: Number of Tracks and number of competitors for

on-site and off-site indoor localisation competition Tracks

Edition Tracks Competitors Real-time Competitors Off-line

EvAAL 2011 1 7 -
EvAAL 2012 1 8 -
EvAAL 2013 1 7 -

IPIN 2014 2 7 -
IPIN 2015 3 6 4
IPIN 2016 4 14 5
IPIN 2017 4 7 9
IPIN 2018 4 14 19
IPIN 2019 5 8 15
IPIN 2020 5 – 21

were mainly driven by the Ambient Assisted Living (AAL)

application scenarios to which EvAAL was inspired [4].

In 2014, the EvAAL competition met the IEEE IPIN

conference, giving birth to the IPIN competition [5]. Such

partnership was the result of two complementary communities:

on the one hand, experience from the EvAAL competitions

provided a well-established evaluation framework; on the

other hand the IPIN provided a vibrant community composed

of academic and industrial attendants who every year share

advances in the area of indoor navigation and positioning.

The birth of the IPIN competition series extended the range of

potential competitors. Indeed, the IPIN competition has seen

a consistent increased of the number of competition Tracks,

each of which focused on specific constraints and objectives,

as shown in Table I. Tracks are split between on-site and off-

site. The on-site Tracks take place during the IPIN conference

and competitors do a live test of their solutions. Off-site Tracks

are performed remotely. For the latter ones, competitors are

required to test their solution by following rules and data sets

provided by the organisers.

During the last 7 IPIN competition editions, competitors

have had the opportunity to test their systems in shopping

malls, conference halls, university campus and large research

centres. Such a variety of locations is the distinguishing feature

of IPIN competitions with respect to similar initiatives. In fact,

the confluence of EvAAL into the IPIN conference refined

the methodology adopted to assess the performance, adding

the following characteristics: no additional instrumentation

allowed, non-overlapping competition Tracks, highly repre-

sentative competition areas, easy-to-understand measurement

statistics to define the final ranking of the tested systems.

Appreciation of this format by competitors (both from

academy and industry) and sponsors is reflected in the consis-

tently growing attendance to the competition.

So far so good, but what’s next for the IPIN competition?

Organisers are looking at two growing trends:

• the increasing performance and diffusion of sensing units

available with commercial devices;

• the wide adoption of learning methodologies with a

never-seen-before statistical power.

As far as sensing is concerned, new short-range Radio-

Frequency (RF) technologies such as Wi-Fi Time-of-Flight

(TOF) measurements, Ultra-Wide Band (UWB) and Bluetooth

5.0 are the next obvious target to include in testing by aug-

menting the existing Tracks or creating new ones. In the future,

medium- and long-range RF technologies 5G and 6G may

become drivers for localisation technology, but currently it is

not easy to set up a representative testbed: telecommunication

providers might play a crucial role for indoor localisation; the

IPIN competition is open to testing and experiencing such

disrupting technologies.

As far as the increasing pervasiveness of machine learning

is concerned, our prospect is to support such evolution by

offering always-more challenging data sets to the competitors,

in order to assess the performance of their systems, as it has

been done with the off-site Tracks. Under this respect, we con-

sider heterogeneity as one of the most challenging properties

of such data sets. Heterogeneity refers to the different nature

of data that can be simultaneously analysed, to improve the

performance of ML-based algorithms. Fingerprint data sets,

based on of Wi-Fi Received Signal Strength Indicator (RSSI)

readings, can be enriched with context information derived

from Bluetooth beacons, environmental or physiological sen-

sor readings, giving rise to unexpected possible correlations.

In turn, such data sets can be used as non-structured inputs to

multi-layer neural networks (e.g. Recurrent Neural Network

(RNN) based on Long Short-Term Memory (LSTM) and

Gated Recurrent Units (GRU) layers) to solve classification

and regression problems applied to indoor localisation. This

trend has been in place in both on-site and off-site Tracks in

the last years, and it is going to continue.

Another interesting topic where the IPIN competition could

promote new challenges is the adoption of a more accurate

and meaningful metric for computing the positioning error.

In fact, one of the objectives of IPIN is to define standard

procedures for evaluating positioning systems, in an effort

to improve over the recent ISO/IEC 18305 standard [6], [7].

Discussion is underway about using an alternative or additional

criterion for computing the error, that is, the distance from each

reference point in the ground truth to the position estimated by

the competing system. Currently, the IPIN competition series

defines the point error as the horizontal distance plus a fixed

penalty of 15 m per each wrong floor. Now times appear to

be mature for the adoption of a “real-world” distance, that

is, the length of the path that a person would need to travel

from the reference point to the estimated point. This is the

same as the Euclidean distance if the two points are in line

of sight, that is on the same floor and in the same room, but

can be very different otherwise. A complete discussion on the

benefits of this new method and of the possible algorithms to

use, complete with code, is available at [8].

A final consideration about the future of the IPIN compe-

tition refers to the integration of multiple indoor localisation

systems. More specifically, we envision a future where dif-

ferent indoor localisation services coexist in the same area.

Such systems will require to be integrated and orchestrated

so that to reproduce, as much as possible, the well-assessed

user experience of navigation in outdoor environments [9]. We

consider two key challenges:

• to standardise Application Programming Interfaces

(APIs) designed to discover, access and use an indoor

localisation systems with a commercial device;



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

• to regulate the privacy consents asked of end-users in

order to provide location-based services in accordance

with the EU General Data Protection Regulation (GDPR)

regulation framework.

III. ORGANISING AN OFFSITE COMPETITION WITH

MULTIPLE TRACKS

In the 2014–2019 editions the systems competing in on-site

Tracks were tested during the IPIN conference, in the same or

a nearby site. This way, competitors were able to both compete

with their system and attend the conference, and conference

attendees could come and look at how the competition was

done. Since the conference was cancelled in 2020, only off-site

Tracks were organised for this edition, under the supervision

of competition chairs Francesco Potortı̀ and Sangjoon Park.

The institutions involved were the Institute of Information

Science and Technologies (ISTI) of the National Research

Council (CNR, IT), UBIK Geospatial Solutions S.L. (ES),

the GEOTEC laboratory of Universitat Jaume I (UJI, ES),

Consejo Superior de Investigaciones Cientı́ficas (CSIC, ES),

the IN3 of Universitat Oberta de Catalunya (UOC, ES) the

GEOLOC Team, University Eiffel (FR), the National Institute

of Advanced Industrial Science and Technology (AIST, JP),

University of Tsukuba (JP), Aerospace Information Research

Institute, (CAS, CH), IIS Fraunhofer (DE) and the Electronics

and Telecommunications Research Institute (ETRI, KR).

A. Preparing the competition areas

In contrast with the two previous editions where most on-

site and off-site Tracks took place in the same large area (a

shopping mall in 2018 [1] and a research centre in 2019 [2]), in

2020 travel restrictions made it impractical to gather together

and take measurements in the same place, so all Tracks were

independent.

The set of evaluation scenarios cover a university library

building, the shopping mall from IPIN 2018 competition [1],

a manufacturing site, road-based tracks with different satel-

lite view conditions (including indoors) and an environment

resembling an industrial setting.

All the Tracks complied with the EvAAL framework [3]

by adopting its four distinguishing core criteria (described in

Section II):

1) Natural movement of an actor

2) Realistic environment

3) Realistic measurement resolution

4) Third quartile of point Euclidean error

Additionally, all the Tracks were compliant with most of

the extended criteria defined by the EvAAL framework, as

detailed below.

1) Secret path: The final path is disclosed immediately

before the test starts, and only to the competitor whose system

is under test. This prevents competitors to design systems

exploiting specific features of the path. This criterion is always

respected in all Tracks given the way the off-site competition

Tracks are set up: competitors are provided with training sets,

ground truth and, in some Tracks, a map. When they have

finished tuning their systems, they ask the organisers for a path

without ground truth, and submit their estimate. The ground

truth is published only after the competition is finished.

2) Independent actor: The actor is an agent not trained to

use the localisation system. This criterion is always respected,

given the way the off-site Tracks are set up.

3) Independent logging system: The competitor system es-

timates the position at a rate of twice per second.... This

criterion is respected or exceeded in all Tracks.

... and sends the estimates on a radio network provided

by the committee. This prevents any malicious actions from

the competitors. The source code of the logging system is

publicly available. This criterion is not respected, because the

competitors may retry and further tune their systems while

trying to guess the correct ground truth. To avoid this, the

committee should ask the competitors to provide their code,

and run it locally in a real-time fashion, or provide a real-time

APIs. This is feasible, in principle, but would require a non-

trivial software infrastructure to be in place, and a non-trivial

additional effort from the competitors to comply with it.

4) Identical path and timing: The actor walks along the same

identical path with the same identical timing for all competi-

tors, within time and space errors smaller than the above

defined measurement resolution. This is a natural consequence

of the fact that the same data are provided to all competitors.

B. Competition results

For each submitted trial, the error was computed by com-

paring the estimated coordinates with the ground truth, that is,

reference coordinates of the key points marked on the ground

along the path. This metric combines the floor detection

accuracy and the horizontal positioning error.

ε = ‖PR −PE‖+ p · |fR − fE | (1)

where

• PR is the vector with the ground truth horizontal (2-D)

coordinates

• PE is the vector with the horizontal coordinates estimated

by the competitors

• ‖PR −PE‖ is the horizontal error, and it is computed

as the Euclidean distance between the ground truth and

the estimated position provided by the competitor in the

2D space.

• p is the base floor estimation error penalty and is set to

15 m.

• |fR − fE | is the absolute difference between the actual

floor number and the estimated one.

The point error ε is computed for all key points marked on

the ground that define the path of a specific challenge. The

“accuracy score” s is given by the third quartile of ε:

s = 3rdquartile {ε} (2)

The team with the lowest score wins the challenge. Note

that each competitor had the opportunity to submit the results

for multiple trials. Table II shows the scores for all the five

Tracks. Some additional metrics included in the ISO/IEC

18305 standard are also reported in the table. Fig. 1 depicts

the cumulative distributions of the accuracy score s for the

winners and runners-up of the five Tracks.
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TABLE II: Results for all Tracks. The first column is the competition score (equation 2), while the remaining columns show

other complementary relevant metrics (mean, RMSE. Median, 95th percentile and floor hit rate (if available). We also include

a reference to the section where the system is described.

Track Team
3rd quartile [m]

Score
Mean [m] RMSE [m] Median [m]

percentile [m]
95th

detect rate [%]
Floor

reference
Section

Track 3
Smartphone-based
Pedestrian Positioning

WHU-FIVE 0.98 0.86 1.05 0.76 1.97 100.00 IV-C.1

IOT2US 1.72 1.26 1.46 1.14 2.59 100.00 IV-C.2

XMU ATR 1.85 1.28 1.45 1.12 2.53 100.00 IV-C.3

Naver Labs Europe 1.95 1.57 2.54 1.18 3.99 98.78 IV-C.4

UMinho 2.72 1.93 2.40 1.57 5.07 100.00 IV-C.5

imec-Waves 2.81 2.19 3.62 1.22 5.17 97.56 IV-C.6

Yai 4.73 6.75 14.23 2.80 49.13 92.68 IV-C.7

WiMap 5.41 3.65 4.49 2.94 7.50 98.78 –

Indora 6.85 7.02 10.96 3.80 27.19 100.00 IV-C.8

TJU 7.22 5.11 6.09 3.80 10.91 98.78 IV-C.9

Next-Newbie Reckoners 23.71 20.09 21.54 19.22 34.66 93.90 IV-C.10

Track 4
Foot-mounted IMU

WHU-GNSS 0.50 0.36 1.10 0.05 1.07 100.00 V-C.1

AIR 5.83 3.87 4.85 3.13 10.16 100.00 V-C.2

Free-Walking 65.17 47.65 52.30 49.13 82.08 13.43 V-C.3

BHSNIP 89.93 58.39 68.86 42.04 119.82 13.43 V-C.4

Track 5
Pedestrian
Dead-Reckoning

Kawaguchi Lab (whole) 6.96 5.34 6.23 4.85 10.80 na
VI-C.1

(ave.of scores) 6.83 5.21 6.03 4.77 10.31 na

yonayona (whole) 14.75 11.40 12.80 10.42 22.07 na
VI-C.2

(ave.of scores) 12.36 10.35 11.26 10.23 18.68 na

Track 5
Vehicle
Dead-Reckoning

Kawaguchi Lab (whole) 24.82 19.82 22.22 18.26 39.31 na
VI-C.1

(ave. of scores) 27.05 20.41 22.97 20.07 36.04 na

yonayona (whole) 60.87 47.99 59.65 35.75 125.13 na
VI-C.2

(ave. of scores) 60.23 44.91 54.03 34.63 95.51 na

Track 6
Smartphone-based
Vehicle Positioning

WHU-Autonavi 7.02 6.75 11.32 2.97 31.33 na VII-C.1

SZU 18.49 11.76 17.02 6.96 32.45 na VII-C.2

YAI 236.6 174.87 194.56 177.76 315.1 na VII-C.3

Track 7
Channel Impulse Resp

YAI 1.38 1.14 1.66 0.72 3.60 na VIII-C.1
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Fig. 1: Cumulative distributions of point errors (Equation 1)
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IV. TRACK 3: SMARTPHONE

A. Track Description

The goal of Track 3 is to evaluate the performance of

different integrated navigation solutions based on a regular

smartphone sensor fusion (magnetometer, barometer, wire-

less communications, Attitude and Heading Reference Sys-

tem (AHRS) or micro-electro-mechanical systems (MEMS),

among others) in an off-site context. As done in the 2016–

2019 editions [1], [2], [10], [11], the same data collection

strategy and evaluation procedure has been followed.

The competition data set was collected by the same actor

using a Samsung Galaxy A5 2017 (SM-A520F) phone with

Android 8.0. Despite being three years old, this model has the

advantage of having being used in Track 3 for 2018 and 2019

competitions. The main features of the embedded sensors,

including the maximum sampling frequency, are summarised

in Table III.

Sensor Model & Manufacturer SamplingFreq.(Hz)

Accelerometer STM - K6DS3TR 200
Gyroscope STM - K6DS3TR 200
Magnetometer AKM - AK9916 100
Barometer STM - LPS25H 5
Light Sensor AMS - TMD3725 5
Proximity Sensor AMS - TMD3725 2
AHRS Samsung 100
GNSS GNSS/Network na
Wi-Fi ∼0.2
Sound 2

TABLE III: Information of the sensors in the Samsung

Galaxy A5 2017 (SM-A520F).

As in the previous competitions, we have used the Android

app “GetSensorData” [12] to record and store the smartphone

sensors data into a single text file, i.e. into a logfile. The data

set is split into three subsets, namely training, validation and

evaluation:

• The first set is devoted to calibration purposes and covers

most of the evaluation area; it contains 18 short single-

floor tracks (collected 4 times each), 4 long trajectories

across bookshelves and 2 floor transition tracks. We

placed key points at every relevant location, i.e. initial/

final locations, significant turns in the tracks and the last

step to arrive at a new floor. A total of 78 training logfiles

were provided to competitors.

• The second set is devoted to validation purposes, allowing

competitors to have an initial assessment of the position-

ing system, and contains 13 multi-floor long tracks. The

number of key points is arbitrary and significantly lower

than in the training set. A total of 13 validation logfiles

were provided to competitors.

• The last set is devoted to evaluation purposes, allowing

competitors to have an independent evaluation without

ground truth data, and contains just 1 multi-floor very

long track. In contrast to the systematic data collection

done in the training files, the evaluation logfile included

realistic movements (e.g. simulating a user that was

messaging or attending a phone call) and stops. Only 1
unlabelled logfile was provided to competitors.

We set the maximum allowed sampling frequency in “Get-

SensorData” for all sensors to record as much as possible

data. Additionally, the smartphone was not connected to any

cellular or Wi-Fi network as, for instance, the Wi-Fi sampling

frequency significantly drops when the phone is connected to

a Wi-Fi network. The logfiles and supplementary materials are

available in [13]. This package complements the ones from the

previous editions [14]–[17].

B. Competition area

The environment selected for Track 3 is a modern

multi-storey library building located at Universitat Jaume I

(Castellón, Spain) and includes a small outdoor area near

the main entry. This environment covers the use case for a

smartphone application guiding students and staff to find the

location of a book.

3
7

 m

87 m

Fig. 2: Floor plan of UJI’s Library

Before collecting data, the library building was visually

inspected to identify the most challenging parts where com-

petitors could find it difficult to obtain accurate positioning.

We finally selected the main hall entry (≈ 300m2), the second

floor (≈ 1000m2), the third floor (≈ 900m2), the floating

fourth floor (≈ 200m2) and the fifth floor (≈ 700m2) to

collect data. We discarded common areas on the first floor

and zones with restricted access. The library is composed by

two interconnected blocks, we mainly collected data in the

first block, except for the fifth floor, where part of the second

block was finally surveyed.

For the evaluation path, we considered a walk done by a

student that was doing some homework in the library. The

student starts sitting in his/her work place (on the third floor),

the student stands up and looks for a book, attends a phone

call –despite it not being allowed–, comes back to the main

workplace and stops for a while. Then, the student needs

additional materials that is on the fifth floor, and goes directly

there. The book is not in the place it was supposed to be, and

the student asks a mate. The book seems to be in the new

bookshelves located in the same floor but in the second block

(left side in Fig. 2). On the way to the second block, the student

meets a friend in the floating fourth floor (which was not

mapped). Our student gets the book, returns to the work place,

but the computer and other materials are gone. The student

has not realised being instead on the second floor and starts

to look around desperately. The student goes out to notify the
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security staff about this event. When the student goes back to

the workplace on the third floor, he/she realises everything is

there and sits to continue working after 20 minutes walking.

The path goes through 82 key points for a total length of

approximately 1000 m.

We have used geo-referenced indoor maps (ArcGIS engine)

and the ArcMap tool to calibrate all the reference points used

in the data set. We performed on-site local measurements

using a laser distance meter with respect to representative

points, such as walls, pillars and doors, which were already

well represented in the indoor maps. The inaccuracies deriving

from this procedure might be considered irrelevant as all the

information and indoor maps are provided to all competitors.

C. Indoor Positioning Solutions Provided By Competitors

1) Team WHU-FIVE: Just like many indoor positioning

systems, the WHU-Five system includes two stages, the train-

ing stage and the testing stage. In the training stage, the

system attempts to build fingerprints, train the models and

extract some information about the positioning environment.

In the testing stage, it deals with the testing data to form the

final trajectory, leveraging the trained information and fusion

algorithm.

a) training stage: In the training stage, four tasks are

performed that can be seen in Fig. 3. The first one is the

feature map construction. In this task, the Wi-Fi fingerprint and

geo-magnetic fingerprints map is built, and extract the book-

shelf layout from the book-shelf training data set. The second

task is the training of the step length model. The third one

is the extraction of the stair-steps’ number of each two layers

from the Floor-Transition data set. The last task is training the

motion pattern model to recognize some motion types, such

as up/down stairs, in/out doors, in-situ steering motion and

phone-holding posture.

Fig. 3: Tasks during the training stage of WHU-FIVE team

system.

In order to build the feature maps, the position of every

sampled signal features must be known. The reference points

are used in the training sets to optimize the Pedestrian Dead

Reckoning (PDR) algorithm to obtain a highly accurate trajec-

tory estimations. The model between PDR and reference points

can then be build. The model is optimized with the Levenberg-

Marquardt (LMA) optimal algorithm. With the optimal PDR,

the feature maps for Wi-Fi and geomagnetic can be build.

Also, the book-shelf layouts can be extracted. As for the step

length model, a leverage linear regression is used to train the

model parameters. For the stair-step number between each

layer, the average steps of each stair on the stair training data

set is used. The motion recognition is performed by training a

multi-layer perceptron neural network model. The time domain

and frequency domain characteristics are extracted from the

original data of the Inertial Measurement Unit (IMU) and

barometer sensors, and then are input to the neural network.

The output of neural network is the motion types set.

b) testing stage: In the testing stage, first, a Wi-Fi finger-

print positioning is used to find out the initial 3-dimensional

position. Then, PDR is fused with the building map and

geomagnetic fingerprint positioning result to estimate the

2-dimensional trajectory. Meanwhile the motion recognition

result is used to revise some error estimation of PDR. Lastly,

the motion on stairs is used to estimate the layer id. Combined

with the layer id, the 2-dimensional trajectory can be built up

to 3-dimensional trajectory.

For the final testing trajectory estimation, the IMU is used to

provide the original PDR. The recognized in-situ steering mo-

tion is used to weed out the corresponding steps and the phone-

holding posture is used to revise the heading of PDR. Then the

revised PDR is fused with the building map and book-shelf

layout in particle filtering algorithm to obtain further trajectory

estimation. The geomagnetic fingerprint matching positioning

result is then fused with the previously estimated trajectory in

Kalman Filter (KF) algorithm to obtain the final 2-dimensional

trajectory estimates. Combining the layer estimation result and

the 2-dimensional estimates, the final 3-dimensional trajectory

is obtained. The algorithm of testing stage of the system as

shown in Fig. 4.

Fig. 4: Main Algorithm of WHU-FIVE system.

2) Team IOT2US: IOT2US team system includes four main

stages: 1) the floor and region decisioning based on Wi-Fi; 2)

the mobility mode detection; 3) the landmark detection; and

4) the PDR algorithm and information fusion. Six types of

sensor data were fused in the whole processing of the track

reconstruction and each part involved some of them, as can

be seen in Fig. 5. In the following paragraphs every stage is

explained in detail.

a) Wi-Fi: According to the training data, there are five

floors involved in this Track. To determine the floor informa-

tion and get the rough location of the user, Wi-Fi Received

Signal Strength (RSS) information is used to decide the floor

and region. Here region is defined as the area that each

training logfile covers.
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Fig. 5: IOT2US system overview.

There are two phases in the Wi-Fi process. The RSS finger-

prints which contains time, floor, region and key-value pair of

MAC and RSS, are built from the training data set during

the offline phase. The RSS fingerprint can be represented

as a vector of (time,floor,region,mac,rss). And during the

online phase, the Wi-Fi RSS information in the evaluation

logfile is compared with the RSS fingerprints to compute the

most suitable location. More specifically, there are two steps

in the online phase.

First, the floor and the region of estimation of the point

are determined with respect to the wireless Access Point

(AP) availability. A coefficient (λ) is defined to indicate the

possibility to estimate a point appearing in the region to which

the RSS fingerprint belongs,

λ = 1− n

ne + nr
(3)

where, the ne is the number of APs detected at the estimation

point, the nr is the number of APs detected at the RSS

fingerprint. The n is the number of APs detected at the

estimation point and the RSS fingerprint at the same time.

This coefficient λ is calculated for every RSS fingerprint that

belongs to the same region. The region with the minimum

sum λ is the estimated region to which the estimation point

belongs to. Then the floor based on this estimated region can

be obtained.

Second, to get the rough location of the estimation point, the

RSS information is compared against all RSS fingerprints. The

Euclidean distance in the signal space between the estimation

point and every RSS fingerprint is calculated as:

d =

√

√

√

√

m
∑

i=1

(rssie − rssir) (4)

where, the rssie and rssir are the RSS values of the i-th

AP detected at the estimation point and the RSS fingerprint,

respectively.

b) Movement modes recognition: Different modes of mobil-

ity can be detected using machine learning or deep learning

algorithms using multi-sensors data. For this Track, four

categories of motion modes were introduced: normal walking,

turning, climbing (stairs), descending (stairs). The process

chain mainly includes data segmentation, labelling, feature

extraction and classification. In IOT2US team system, ac-

celerometer, gyroscope, magnetic field, and pressure are used

for motion modes classification. Some statistical characteris-

tics (e.g., mean, max, derivative) of these time series in time-

domain are extracted as features. Decision tree and Support

Vector Machine (SVM) are investigated to classify these

motion modes.

c) Landmark detection: Map information is one of the most

important clues that can help to correct the trajectory. Tradi-

tional map matching trends to make use of the structure of the

rooms, corridors and tunnels to restrict the trajectory. However,

this request too many details of the map and sometimes to

measure the building structure in detail is a heavy workload.

Hence, some landmarks are identified that activities can only

happen at certain places as Correction Reference Points (CRP)

to correct the trajectory.

Through analyzing the relationship between the real envi-

ronment and sensors data, three types of CRP can be identified,

which are determined by Barometer, Ambient light sensor,

and door-crossing activity: 1) the activity of climbing and

descending stairs can only happen at stairs, and hence, with

a rough location using Wi-Fi can give at least two CRPs. 2)

Light intensity measured by Ambient light sensor also has

relationship with activities. As an example of walking across

bookshelf activity, as shown in Fig. 6, the activity of walking

out of the bookshelf and turning backing is recorded as a

peak in light intensity. The light determined CRPs also can be

determined at place of crossing doors, enter/leave the building

and approaching to a window. 3) The third type of CRP

determined by door-crossing is similar with the first one that

requires recognize the door-crossing activity and Wi-Fi to find

a rough location to determine the position of a door.

Fig. 6: Light intensity determined CRPs in IOT2US system.

d) PDR and Information Fusion: Step counting, step/stride

length estimation and heading determination are three crucial

processes for PDR positioning systems. Peak detection [18] is

used to count steps, the Weinberg method [19] to estimate step

length and complementary filter [20] for heading determina-

tion. To overcome this the traditional PDR algorithm issue of

error accumulation over elapsed time, information is fused,

including movement modes, floors, regions and landmarks.

First, as the sensor data may show distinctive characteristics

when a user performs different activities, movement modes
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Fig. 7: Framework of XMU ATR team system: XMU PDR

are used to finely tune the parameters of step counting and

step length estimation. For example, when a user is climbing

or descending stairs, the parameters of step counting and step

length estimation algorithms is accordingly adjusted to im-

prove their performance. Second, before calculating locations

using PDR, Wi-Fi is used to determine the absolute floor and

the region information where the user roughly locates. This

process assisted IOT2US to provide absolute location to help

calculating the PDR trajectory and determining a CRP. And

third, if the user is detected as reaching at a CRP, but the

calculation result diverges from it, the heading is adjusted,

step length and the previous track, to drive the trajectory back

to the CRP.

3) Team XMU ATR: XMU ATR proposed XMU PDR sys-

tem. It is a multi-source indoor positioning system using

information obtained from a Inertial Measurement Unit (IMU),

Wi-Fi, magnetometer, barometer and indoor maps, jointly.

Fig. 7 shows the framework of the proposed system. There

are four main functional modules described as in the following

paragraphs.

a) Inverted pendulum model based Pedestrian Dead Reckoning

(PDR): A raw trajectory is obtained from the inertial data

using an inverted pendulum model based PDR algorithm [21]

by estimating every pedestrian step length and heading angle

directly. The proposed system uses an inverted pendulum

model to calculate the step length. To achieve 3-D positioning,

the barometer is used to estimate the transition of floors. In

the PDR system, heading errors are one of the main factors

when estimating positions which will lead to a decrease in

positioning accuracy over time, other information needs to be

introduced to correct the trajectory.

b) Wi-Fi fingerprints matching: Wi-Fi fingerprints matching

is a reliable way to obtain absolute indoor position. Since

the ground truth of some reference points in the training

set is provided, the Wi-Fi Received Signal Strength (RSS) is

extracted at the reference points as fingerprints to build up the

fingerprints database. Weighted k-Nearest Neighbor (WKNN)

algorithm is used to match the Wi-Fi Access Point (AP)

between fingerprints database and the RSS from evaluation

data. Since the initial point is unknown, the trajectory obtained

by PDR can only be presented in a temporary navigation frame

automatic defined by the dead-reckoning system. Therefore,

the result of Wi-Fi positioning can be used to estimate the

transformation relationship between the navigation frame and

the geographic frame, including coordinate translation and

rotation.

c) Magnetic fingerprints matching: The indoor magnetic

field can be treated as a time invariance distribution in spatial-

ity. The accuracy of spatial resolution can achieve centimeter

level in a small area. The magnetic fingerprints matching

is used for trajectory refinement. Since the trajectory to be

evaluated may have some overlap with the training set, the

observations of magnetometer in the training set are also used

as labeled fingerprints. A modified dynamic time warping

algorithm is used in this part which can deal with the matching

problem between two sequences with different directions. A

matching threshold is set to decide whether the matching is

successful. If there is a trajectory in the evaluation set match

to part of trajectories from the training set, this track can be

located on the map.

d) Map matching: To reduce positioning error accumulated

from the noise of inertial observations, the map information is

used for trajectory calibration. The optimal estimation under

the map constraint especially the track at specific locations

such as walls, doors, and stairs are realized. The floorplan is

presented in the form of grids, and a loss function is defined to

adjust trajectory actions referring to walls and some specified

behavior patterns.

4) Naver Labs Europe (NLE) Team: Naver Labs Europe

(NLE) Team system is based on extending the localization
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Fig. 8: Magnetic field based localization from the NLE team system. Magnetic field data captured by the mobile phone are

transformed in time series. Encoded into 2D images, they form an input for Convolutional neural network (CNN) and

Recurrent Neural Network (RNN) trained to predict the user’s position.

pipeline developed for IPIN 2019 [1] challenge with new com-

ponents. The pipeline is a sensor fusion framework deploying

smartphone inertial sensors, Wi-Fi measurements, magnetic

field data and landmarks. The main components are described

in the following paragraphs:

a) Floor detection: Floor is detected using a standard k-

Nearest Neighbor (KNN) classifier trained on barometer and

Wi-Fi data.

b) Activity detection: User’s activity (walking, standing,

going up or down the stairs) is identified by applying spectral

analysis on the accelerometer data and simple thresholds.

c) PDR: User steps are first identified by applying peaks

detection to accelerometer data.Then, the acceleration features

are extracted and a model is trained for the step length/speed in

a given sliding window. Together with the orientation sensor,

a first order approximation PDR of user’s track is built.

d) Semi-supervised Variational Auto-Encoder (VAE) for Wi-Fi:

A radiomap is constructed from the Wi-Fi data provided in the

training and the validation data sets. Recorded data provides a

Wi-Fi scan reading every 4 seconds approximately, but without

an exact position where this scan was taken. Using the inertial

sensor data, the approximate position can be inferred by using

the semi-supervised Variational Auto-Encoder (VAE) [22].

e) Magnetic field based localization: This component for

indoor localization uses magnetic field data captured by the

mobile phone. In indoor environment, magnetic anomalies are

created by different ferromagnetic objects. To benefit from

their presence, the state of the art landmark-based classi-

fication [23] is extended. Once the magnetometer captures

changes of the Earth’s magnetic field due to indoor magnetic

anomalies, they are transformed in multi-variate times series.

Temporal patterns are then converted in visual ones by using

1D convolutions with Recurrent plots, Gramian Angular Fields

and Markov Transition Fields (see Fig. 8). This represents

magnetic field data as image sequences and permits to deploy

convolutional layers to associate magnetic patterns with partic-

ular places. A deep regression is trained on the user’s position

and combined convolutional and recurrent layers in the deep

network [24].

f) Deep PDR: PDR is processed by applying deep learn-

ing. Acceleration and orientation sensor data streams are

pre-processed and represented as 2D images analogously to

the magnetic field data. CNN and RNN are used to extract

underlying hidden correlations between different sensors and

modalities to learn a model of user local displacement. This

allows coping with sensor noise and replaces the manual

feature extraction which is frequently a subject to data noise

and sophisticated thresholding, including tuning to different

pedestrian profiles, depending on gender, age, height etc.

The deep PDR model is learned to predict relative (x, y)

displacements. The relative displacement model is trained

using the regression loss on available annotated data.

The deep PDR model is locally accurate but accumulates

errors over time. This PDR drift is compensated by using

global localization components based on Wi-Fi and magnetic

field based localization.

g) Landmarks and pseudo labels: CNN/Deep Neural Net-

work (DNN) models require large-scale training data. How-

ever, genuine ground truth annotations are sparse and available

for a limited number of landmarks. On the other hand, raw

sensor data are massively generated at a high rate. So, sensor

data is annotated with pseudo labels and a large annotated set

for training CNN/DNNs is generated. Pseudo labeling is based

on simpler tasks of user walking and landmark detection and

an interpolation of user’s behaviour between the landmarks

using the first order approximation PDR.

h) Prediction fusion and map projection: Relative predictions

provided by deep PDR and absolute predictions provided by

Wi-Fi and magnetic field data are combined using an Extended

Kalman Filter (EKF). The output of the filter is then fine-

tuned, by projecting it on the paths that were traversed while

collecting training and validation sets, to make sure that the

final result lies within the navigation space in the building.

5) Team UMinho: The UMinho team approach for the 2020

competition (Fig. 9) was based on a Particle Filter (PF) to

fuse Wi-Fi fingerprinting positioning with motion, heading

and atmospheric pressure data. In a calibration or initialization

phase, the positioning system is prepared by creating a space

model (floor plan) and a Wi-Fi radio map created using the

training data. The radio map and the floor plan are then used

in the Validation and Evaluation phases by the PF to estimate

the trajectory using PDR obtained from motion and heading

data.

a) Creating the Wi-Fi Radio Map: The Wi-Fi radio map was

created using the provided Training data sets. To obtain a

higher quality radio map, correction techniques are applied

to the trajectories obtained through PDR (module 2). The

correction approach uses the ground truth points included

in the Training data sets (POSI) to correct the distance and

heading for each training trajectory. The description of the

training data sets specifies that the user travels along a straight

path between two consecutive POSIs, making it possible to
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Fig. 9: Overview of the UMinho team approach.

estimate the travel distance error and the heading error between

two POSIs. The segment between the two POSIs is then

corrected proportionally by re-doing the PDR between the

two POSIs, adjusting each step length and heading value so

that the estimated position at the second POSI matches the

ground truth. This approach works for the Training trajectories,

except the ones including stairs. The corrected trajectories

from module 2 are fused with Wi-Fi, pressure and POSI data in

module 3 to estimate the floor and (x, y) position for each Wi-

Fi sample in the Training data set. The radio map is obtained

from this process.

b) Floor Plan Integration: The floor plan is integrated by

processing the provided bitmaps or vector images for each

floor. Some processing is required to incorporate the floor

plan into the PF (module 1). The first step is to remove some

elements that may prevent the particles from moving freely

between the existing spaces, such as doors represented in the

floor plan. Then the floor plan is converted to binary format.

c) Estimating the Final Trajectory: The final trajectory is

estimated by processing the Evaluation data set which is

provided with the same types of data available in the Train-

ing data sets, except for the ground truth POSIs. Module

4 is responsible for estimating the displacement using the

accelerometer measurements. The movement displacement is

assessed by an algorithm that estimates the user’s steps and

corresponding length (algorithm also applied in module 3).

The displacement and heading information for the Evaluation

trajectory are obtained from module 4, necessary to perform

PDR, which is integrated into the PF (module 6). Wi-Fi and

pressure samples are combined in module 5 to estimate the

floor and the z coordinate for each Wi-Fi sample. The radio

map, created in the initialization phase, is used to perform

Wi-Fi fingerprinting and improve the floor estimation. These

enhanced Wi-Fi samples are then fused with the displacement

and heading samples in the PF. The PF (module 6), based on

the solution presented in [25], performs sensor fusion of Wi-Fi

fingerprinting with PDR (displacement and heading). Particles

are created around the initial position, which is estimated using

Wi-Fi fingerprinting. Particles states follow a PDR motion

model considering noise in the heading and displacement.

Particles’ weights are updated based on Wi-Fi fingerprinting,

using a distance function to convert the distance between the

particle and the Wi-Fi position estimate into a weight. Higher

weights are assigned to particles closer to the Wi-Fi position

estimate. To reduce errors from Wi-Fi fingerprinting, a partial

radio map is used, considering only Wi-Fi samples that are in

the neighbourhood of the PF estimated position. Particles with

lower weights, including those that hit walls or obstacles, are

resampled based on the multinomial resampling method. The

floor changes provided by module 5 allow the PF to adjust

the motion model when a user changes floors, reducing the

step length. The PF also performs adjustments when a floor

transition is detected to ensure that all particles are moved into

the current floor. The final pose is obtained from the particles’

positions and headings weighted average.

6) Team imec-WAVES: imec-WAVES team positioning sys-

tem consists of 4 parts: Pedestrian Dead Reckoning, RSS

fingerprinting, floor (transition) detection and PF. Fig. 10

shows a flowchart of the system. These steps are introduced

in detail in the following paragraphs.

Pedestrian Dead Reckoning The PDR algorithm fuses the

data of accelerometers, gyroscopes and magnetometers to

estimate the trajectory. It consists of step detection, heading

estimation and step length estimation. Step detection and head-

ing estimation are based on [26]. For step length estimation,

an adaptive Weinberg model is used [27]. The phone carrying

mode is determined for each step by a KNN-classifier. The

features used are average and variance of both roll and pitch

from the AHRS data during one step. The competition training

data include one carrying mode: holding the smartphone in

front of the body. However, the competition introduction

document mentions realistic movements (e.g. phone call).

Therefore, additional training data was created by the team

where an actor walked for several minutes while pretending to

make a phone call. If a phone call is detected in the evaluation

data, the heading is flipped 180°.
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Fig. 10: System flowchart of imec-WAVES team

RSS fingerprinting The radiomap is constructed by in-

terpolating between the known coordinates in the training

data [1], [2]. The Euclidean distance metric is used to match

RSS vectors in the validation/evaluation data with RSS vectors

in the radio map. The metric can only be applied to a subset of

RSS values for each vector, depending on the APs the vectors

have in common. A penalty is added to the Euclidean distance

for each AP that is not in the subset. This prevents a (false)

good match when the RSS vectors have only a few APs in

common but with similar RSS values. The weighted centroid

of the three best matches is selected as the estimated position.

Floor (transition) detection The barometer is used to

estimate height changes. The average pressure during each

detected step is converted to a height difference relative to

the first step [28]. If the absolute height change is more than

1.5 m within a window of 15 consecutive steps, these steps

are labeled as ‘on stairs’. However, the pressure changes with

time regardless of the actual height difference. Therefore, if

the time between two steps is more than 20 s, the height

difference between these steps is removed to prevent false

stair detections when standing still for a long time. The

height difference during each sequence of ‘on stairs’ labels

is then used to estimate the floor difference. The middle

step of each ‘on stairs’ sequence is labeled as ‘transition’.

The barometer method can accurately detect transitions, but

can have errors in the estimated floor differences because

the true floor height is unknown. The visited floor itself

can be determined by matching RSS measurements with the

radiomap, but sometimes the wrong floor is matched for a

short time interval. The Viterbi algorithm, which was used

for the previous competition to perform localization [29], is

now used to find the most likely sequence of visited floors by

fusing these RSS matching and barometer methods.

Particle filtering A PF is used to fuse the output of previous

parts and to perform map matching. To enable the latter,

the provided floor plan images are converted to XML files

containing the locations of each wall, staircase and elevator.

This is done with the WHIPP tool [30], [31]. The locations of

bookshelves in the evaluation environment are deduced from

the training data and regarded as walls. The implemented PF

is the Backtracking Particle Filter (BPF) [32]. During each

iteration, the BPF uses new information to update current

and previous states. At initialization, thousands of particles

are generated uniformly over the floor plan. The amount of

particles is drastically reduced during the next iterations when

the filter starts to converge. The length and heading of the

detected steps are used to propagate the particles. Artificial

Gaussian noise added to the heading depends on the detected

carrying mode. The floor plan is used to remove all particles

that crossed a wall during propagation, as this is physically not

possible. If RSS measurements are available for the current

step, the position is estimated and a Gaussian curve is used

to weigh the particles based on their distance to the estimated

position. If the step is labeled as ‘on stairs’, the weights of

particles outside of staircases are decreased. If the step is

labeled as ‘transition’, the next floor plan and radiomap are

loaded.

7) Team YAI: One of the most popular positioning methods

for indoor positioning is the fingerprinting method. However,

the accuracy of positioning results suffers from the definition

of distance among the Received Signal Strength (RSS) values

and the fingerprinting table. Because the unit of the received

Wi-Fi RSS value is dBm, the similarity calculation is prone to

errors when performing fingerprinting positioning. YAI team

proposes a fuzzy-based pre-processing method so that the

RSS entries in the fingerprinting database can be converted

into the corresponding defuzzification values. In the following

paragraphs the system is introduced in detail.

a) Fuzzy-based Pre-processing: The membership function

used is the bell-shape membership function, which could be

expressed as follows:

µ(x) =

(

1 +

∣

∣

∣

∣

x− c

a

∣

∣

∣

∣

2b
)

−1

(5)

where the parameters a, b, and c would affect the width

and slope associated with the bell-shape. Using the training

data, the parameters in (5) are obtained. Fig. 11 illustrates the

membership functions used in this competition.

The defuzzification method used is based on the weighted

average formula as follows:

y∗ =

∑N

i=1
yi µi(x)

∑N

i=1
µi(x)

(6)
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Fig. 11: The membership functions used by the YAI team

system for the received RSS values.
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Fig. 12: The defuzzification process used by the YAI team

system.

where x is the received RSS values, µi(x) denotes the degree

of membership for the i-th rule, yi is the weight of the i-

th rule, and N = 5 is the number of rules used. Fig. 12

shows the mapping for the defuzzification process used. Using

the mapping function as shown in Fig. 12, a fuzzy-processed

fingerprint map is obtained. An example to explain the main

idea is illustrated in Table IV. Note that “na” denotes the

RSS value and it is below the receiving sensitivity of a Wi-Fi

module on a smartphone. In this case, the demapping function

maps “na” to 0, which means the RSS value is very weak.

Then this fuzzy-processed fingerprint map can be leveraged

to get the location with the conventional localization method.

TABLE IV: An exemplary fingerprint map with the proposed

fuzzy-based pre-processing of YAI team system.

Original fingerprint map FPi with the values of RSS in dBm

Record Location AP1 AP2 AP3 AP4 · · ·
FP1 (x1, y1) −65 −77 −73 na · · ·
FP2 (x2, y2) −76 na −82 na · · ·
FP3 (x3, y3) −72 −64 na −88 · · ·
FP4 (x4, y4) −54 −48 na −70 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Fuzzy-processed fingerprint map F̂Pi

Record Location AP1 AP2 AP3 AP4 · · ·

F̂P1 (x1, y1) 2 1.13 2 0 · · ·

F̂P2 (x2, y2) 1.31 0 0.61 0 · · ·

F̂P3 (x3, y3) 2 2 0 0 · · ·

F̂P4 (x4, y4) 3.07 4 0 2 · · ·
.
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Fig. 13: The resulting CDF of the positioning errors with

respect to the testing data set with the YAI’s system.

b) Simulation Results: To evaluate the performance of the

proposed positioning algorithm the competition files were

used. Using the testing data, the resulting Cumulative Dis-

tribution Function (CDF) curves (see Fig. 13) of the errors

in positioning are obtained. It can be seen that when locating

using only Wi-Fi, the third quartile of the positioning errors are

3.539 m. After improving the fuzzy-based pre-processing, the

value could further drop to 2.189 m, thus significantly reducing

the positioning errors.

8) Team Indora: The positioning method of Indora team

system is designed for the smartphone users in the scenario

with known map floor plans, smartphones equipped with

sensors, and with no additional infrastructure installed in the

building, which is in accord with the competition Track rules.

The main research focus is on the Bayesian filtering compo-

nent, especially the comparison of grid-based approaches with

the particle filter present in various solutions including systems

introduced by other competitors.

a) System Description: The proposed positioning sys-

tem [33] consists of multiple components merged together

using the Bayesian filtering. A floor transition is detected

using barometer measurements. However, these transitions

were also identified using the Wi-Fi fingerprinting method as

the incorrect floor detection has significant effect on the overall

performance in the competition. The Bayes filter calculation

corresponds to the movement on a single floor. The filter prob-

abilistically estimates a current state which is defined as the 2D

position on the selected floor. A calculation (consisting of the

transition phase and the evaluation phase) is triggered when

a step is detected. The transition phase is performed using

PDR, i.e., the step direction is obtained from inertial sensors

and together with the expected step length introduces a new

estimation calculated from the prior position. Noisy sensor

measurements, incorrect step length model, and other aspects

are resolved by the filter which increases the uncertainty of

the current estimation. The uncertainty is reduced during the

evaluation phase utilizing the map. The map model (based on

the tessellation) is generated from annotated floor plans using a

custom tool. This framework was applied on the IPIN 2018 [1]

and IPIN 2019 [2] competitions using the centroid grid filter as

the Bayesian filtering implementation. Another method for the

positioning was derived from the existing system by replacing

the grid filter with the particle filter, improved step length
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calculation, and using Wi-Fi fingerprinting as an additional

method for the evaluation phase of the filtering. The position

is chosen among particles (or grid cells in the former approach)

with the maximum belief value, i.e., the position within the

building with the highest assigned probability.

b) Competition Strategy: The proposed framework is de-

signed for the real-time positioning. This aspect was taken

into account during the off-site competition. Every trial was

simulated on the smartphone in the same manner as for the on-

site localization. However, the input sensor file was split for

the processing convenience to individual files with consecutive

steps on a single floor, i.e., the floor transition detection

method was performed on raw sensor measurements and all

parts were processed separately.

First attempt was computed using the particle filter and the

Wi-Fi fingerprinting method. Second attempt consists of the

method output using the centroid grid filter. The main focus

was on the parameter configuration in this submission. The

centroid grid filter was applied on IPIN 2018 [1] and IPIN

2019 [2] competitions. In [33], the method was compared with

other grid-based approaches and the recommended configura-

tion was discussed. Multiple parameter settings were explored

based on the previous observations leading to the selection of

the final competition submission. Third result was obtained as

a combination of both approaches. The particular method was

chosen for each floor individually according to the author’s

consideration based on visualized trajectories.

c) Results Analysis: The third attempt was a combination

of both applied methods. The centroid grid filter was selected

on a segment corresponding to the second floor and the particle

filter approach was chosen for all other floors. However, the

achieved result did not outperform other attempts. Official

third quartiles of errors are 6.85 m (particle filter), 8.39 m (grid

filter), and 7.02 m (mixed). The analysis with known ground

truth positions revealed the incorrect time shift of the first

segment on the third floor. Corrected positions obtained the

third quartile of errors 3.86 m, 4.46 m, and 3.89 m. For better

understanding of the system performance, the first approach

was replayed without the Wi-Fi fingerprinting method. The

method with the particle filter component resulted in 4.38 m.

This result is similar to the centroid grid filter (4.49 m). These

two systems differs only in the applied Bayesian filtering

implementation. The results supported former observations

as the grid approach is more stable in the prediction (2.7 m

mean of errors) and the particle filter provides a lightweight

approach for the computation but it requires additional ap-

proach to reduce outliers (4.3 mmean of errors). The Wi-Fi

fingerprinting erased large errors on some checkpoints, e.g.,

seven consecutive positions with errors above 14 m including

three positions above 24 m were corrected with the Wi-Fi

to reasonable values with the maximum 7.2 m and minimum

under 1 m.

9) Team TJU: Fig. 14 shows the block diagram of the

approach proposed by TJU team. It consists of four stages: 1)

the PDR, 2) magnetic fingerprinting, 3) the floor recognition

and 4) the trajectory fusion. The proposed approach uses

the magnetic fingerprinting and PDR to separately generate

the trajectory of the device, and fuses the two estimated
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Gyroscope

Magnetometer

Heading 

estimation

Step detection

PDR

Fingerprinting

Wi-Fi

Barometer

Floor 

recognition
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Radio 

map

(x, y)

Floor 

ID

Fig. 14: Flowchart of the heading estimation algorithm

proposed by TJU team system.

trajectories to produce precise trajectory by Kalman Filter

(KF). In addition, the current floor is detected relying on Wi-

Fi database for each floor, and the transitions between floors

depends on air pressure measurements. The details of the four

stages are described in the following paragraphs.

a) PDR Backbone: The PDR backbone is implemented

following two steps:

• step detection using peak detection method;

• adaptive position updating strategies according to peak

values:
{

rp = rp−1, ‖fp‖ ≤ γ

rp = rp−1 + SL
[

cosψ sinψ
]

, ‖fp‖ > γ
(7)

where r refers to 2D position; p is the timestamp of a

specific force norm peak; SL refers to a constant step

length; ψ refers to estimated heading; ‖fp‖ refers to the

peak value of specific force norm; and γ is the threshold

to recognize still state and motion.

Generally, the orientation of the device is estimated using

accelerometer and gyroscope readings. The magnetometer was

rarely used indoors due to the distortion of the magnetic field.

In spite of the drawbacks of indoor magnetic data, filtered

magnetic field can still enhance the orientation estimation [34].

Inspired by TJU team previous work [35], the original Madg-

wick algorithm [36] is improved to achieve high-accuracy and

robust heading estimation. Fig. 15 shows the flowchart of the

proposed heading estimation algorithm. When the agent is still,

its attitude is frozen to avoid introducing errors. Otherwise,

MadgwickAHRS algorithms based on different data streams

are triggered according to quality of magnetic fields. The

improved method is immune to magnetic disturbance but

long-term motion in magnetically disturbed environment may

degrade the performance of the improved heading method.

b) Magnetic Fingerprinting: Magnetic fingerprinting can be

formulated as a classification problem. Namely, a classification

model can be trained using magnetic features labeled by

reference position indexes. Instead of using magnetometer

readings mb as an observation directly, they are transformed

into magnetic vector mn = {X,Y, Z} under navigation

frame (n-frame). Since X and Y are changed with directions,

horizontal intensity, H =
√
X2 + Y 2, vertical intensity, Z,

and total intensity, F , are used as features to train a machine
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Fig. 15: Flowchart of the heading estimation algorithm

proposed by TJU team.

learning-based model. The benefit is that H , Z and F are

immune to sensor orientations and there is no need to collect

the data of all directions at a reference point.

During data collection, a participant stays at a reference

point for a short while or walks slowly through a reference

point. Therefore, the data in 0.5 s before and after the reference

point timestamp is considered as that at the point, and extract

all data for entire training data set. As a consequence, a raw

data set labeled by reference point indexes is built. To enhance

the data set, a one-element sliding window with a size of N is

used to extract the data of each raw 1 s fragment for each ref-

erence point. Then, the extracted data in the sample window is

transformed into the feature {Hi:i+N−1, Zi:i+N−1, Fi:i+N−1}.

Finally, several machine learning-based models are trained,

such as KNN, SVM, Naive Bayes and ensemble models. After

10-fold cross validation, it can be found that the 1-NN model

achieves the highest F1-score of 0.9949.

c) Floor Recognition: In this stage, the training data are

used to create a radio map for each floor using received

signal strength (RSS) measurements. RSS values in existing

MAC address list are used to train a random forest model

to determine the floor ID. However, since the Wi-Fi data is

collected with a very low frequency of approximately 0.25 Hz,

it cannot provide enough time resolution to determine the

precise transitions between floors. Therefore, barometer data

with a higher frequency of 5 Hz is used to detect the floor

transitions. A mean filter was used to smooth the barometer

data before calculating the data difference in successive times-

tamps. Then, the start and end of the transition between floors

can be clearly identified. Wi-Fi data assisted with barometer

data can estimate the vertical trajectory of a user well.

d) Fusion using Kalman Filter: The PDR system outputs

high-frequency 2D positions, while reference points with a

lower frequency are recognized by magnetic fingerprinting

model. A Kalman filter acts as a bridge to relate two sys-

tems. The filter outputs the corrected path using the relative

estimations from the PDR model (time update) and absolute

position estimations from the magnetic positioning system

(measurement update).

10) Team Next-Newbie Reckoners (NNReckoners):

NNReckoners team’s method focused on two main parts:

position prediction using Random Forest prediction model

and IMU position estimate using Wi-Fi propagation and

PF (Fig. 16). In other words, the team approached the

competition data set with 2 challenges in mind: 1) increasing

the volume of Wi-Fi data to train the prediction model, and

2) leverage the IMU to improve position estimate by Wi-Fi.

Fig. 16: NNReckoners tean system overview

In order to build the RSS data set to train the prediction

model, enough data is required. Hence, data augmentation

was adopted to improve the model performance. With the data

extrapolation, modifying the RSS at detected AP by increasing

the signal strength by 5, the original Wi-Fi data set was

enlarged by 30 times [37].

Complementing the Wi-Fi prediction, PDR was applied by

incorporating the step count, stride length and orientation

calculated from the IMU sensor. The idea of Wi-Fi propagation

was to trust the Wi-Fi prediction and recursively estimate

the position using the step counts and bearings obtained in

between.

Additionally, a particle filter was used to identify the

best possible route taken with respect to the derived PDR

algorithm. A set of particles was first distributed within the

bounds of the map as provided by the competition organisers.

Subsequently, a simulation is started from the starting times-

tamp to the ending timestamp where each particle was moved

in accordance to the step data and bearing obtained from the

PDR algorithm. Each particle contained a weight and a history

of coordinates. If a Wi-Fi position estimate is available, the

weight of particles within a radius from the estimated position

and its estimated distance error is further increased. It was set

due to the fact that Wi-Fi prediction was observed to produce

shorter distance errors than PDR. At the end of the simulation,

the particles with the highest weight are selected, and the

final route is determined by looping through and averaging

the history of coordinates for all selected particles.

V. TRACK 4: FOOT-MOUNTED IMU-BASED POSITIONING

A. Track Description

Track 4 was dedicated to foot-mounted inertial and GNSS

navigation in an off-site context. Data were collected with

the PEdestrian Reference SYstem (PERSY) sensor (see Ta-

ble VI) developed by the GEOLOC team at University Gustave

Eiffel. Track chairs collected the data by walking through

the competition area over a 1.2 km walk path spanning four

different floors, using lifts, escalators and travelators. Also

a few outdoor parts were included as shown in Fig. 17, as

well as some breaks of various duration. Track 4 followed
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the same data collection strategies as the off-site competitions

organised in previous years [1], [2]. In contrast with all the

other Tracks, where competitors were provided with a detailed

map beforehand and could make use of that information,

competitors in Track 4 could not use of any map information.

Fig. 17: PERSY and description of Track 4 over Atlantis

shopping mall

Two data sets were given to competitors. Data set num 1

was taken on a single static location for several hours, and

was meant to be used for sensor calibration, by enabling

competitors to compute noise and measurement bias of inertial

sensors (Allan variance). Data set num 2 was the data recorded

on the Atlantis shopping mall area following 6 different steps,

as shown in Table V and in Fig. 18.

Step Duration Description

Step1 10 s hand-held static phase
Step2 60 s magnetometer calibration
Step3 10 s hand-held static phase
Step4 ≈2 min PERSY setup on the foot
Step5 60 s static phase with PERSY on the foot
Step6 ≈30 min evaluation Track including key points from 1 to 68

TABLE V: Steps description composing Data set num 2.

The competitors’ objective was to re-build the trajectory

realised by the Track chairs. The evaluation was done by

comparing 2D position and floor level estimated by each team

to the coordinates of 67 reference points (key points). To

do so, a Table containing timestamps of expected key points

was shared, and competitors had to provide the corresponding

coordinates.

Data Set and supplementary materials –e.g. data sheet of

sensors embedded in PERSY– were provided to competitors

of Track 4. These contents and the ground truth location

for evaluation are now available for further benchmarking

in [38]. This package complements the ones from the previous

editions [39] and [40].

Fig. 18: Temporal view of steps composing Data set num 2.

Sensor Model & Manufacturer Sampling Freq. (Hz)

Accelerometer STIM300 - Sensonor 160
Gyroscope STIM300 - Sensonor 160
Magnetometer HMC5983 - Honeywell 160
GNSS NEO-M8T - Ublox 5

TABLE VI: Information about embedded sensors inside

PERSY.

B. Competition area

For IPIN 2020, due to Covid-19 situation, Track4 com-

petition was held in ”Atlantis Le centre”, a large shopping

mall close to Nantes - France. This site has already been

used in IPIN 2018 for all competition Tracks, and a very

accurate survey was realised. This has eased the design of the

ground truth (see [1] for details on the survey). There were

multiple difficulties when surveying such a big shopping mall:

wide areas, lifts, escalators, and even a carousel, as illustrated

in Fig. 19. Complexity related to the Covid-19 also led the

Track chairs to make loops on the path in order to respect the

direction of travel, as shown in Figure 20.

C. Indoor Positioning Solutions Provided By Competitors

1) Team WHUGNSS: The classic zero-velocity update al-

gorithm (Zero-velocity update (ZUPT)) based foot-mounted

pedestrian dead reckoning consists of a strap-down inertial

navigation algorithm, a stance phase detection algorithm, and

an error state Kalman filter. However, the classic ZUPT-based

Foot-PDR [41], [42] cannot overcome the influence of the

complex motion of the pedestrian. The WHU-GNSS team

system is based on several schemes designed to improve

navigation performance, as shown in Fig. 21.

The core algorithm is the strap-down inertial navigation

algorithm. On this basis, a zero-speed detection method with

adaptive threshold setting is used to adapt to different users.

Next, the motion pattern recognition algorithm is used to

distinguish whether the user is walking normally or taking the
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Fig. 19: Track4 difficulties over the path

Fig. 20: Left part: imposed direction of travel. Right part:

multi-floor environment.

Fig. 21: Block diagram of multi-constraints-based

foot-mounted PDR algorithm of WHU-GNSS team system.

escalator and elevator, and uses constant speed, Zero-velocity

update (ZUPT), Zero angular rate update (ZARU), Improved

heuristic drift elimination (iHDE), linear trajectory and height

constraints to improve the position estimation accuracy ac-

cording to the discrimination results. In addition, the magnetic

field will be used to detect whether the user has returned to

the place where they have walked, so as to correct the current

navigation state with the historical estimated position. And

when the user comes to an outdoor scene, the GNSS signal

will be used to improve the final positioning performance.

a) The Multi-Constraint Algorithms: The classic

Generalized Likelihood Ratio Test (GLRT) method is

one of the most common algorithms for detecting the

stance phase [43], [44]. In the WHU-GNSS team system,

an improved adaptive threshold is used instead of the fixed

threshold method to detect the stance-phase in each gait

cycle. The adaptive threshold method is adaptable to different

gait frequencies in dynamic motion. Once the stance phase

is detected, a zero velocity vector is used to estimate and

correct the navigation error [41].

The heading angle error and the z-axis gyroscope bias of

the ZUPT algorithm are unobservable. Thus, the following

methods are used to constrain the error divergence of the

heading angle. First, the Zero angular rate update (ZARU)

algorithm is employed to estimate the gyroscope bias and

heading angle error [45]. Compared with the stance phase

detection algorithm, a stricter fixed threshold is used and

a more extended continuous period to determine the update

chance of ZARU. Second, when a pedestrian is determined to

be walking in a straight-line path or the corridor’s primary ori-

entation, the Improved heuristic drift elimination (iHDE) and

the straight-line constraint algorithms are applied to estimate

the heading angle and the z-axis gyroscope bias [46], [47].

These algorithms can effectively improve the performance and

reliability of pedestrian navigation.

The height error divergence is also a significant problem in

Foot-PDR, especially for multi-floor navigation and position-

ing applications. In the absence of a barometer, an effective

height constraint algorithm is adopted to reduce the error

drift along the vertical channel. When pedestrians go up and

downstairs, the slope angle can be considered constant in most

cases [48]. In the WHU-GNSS solution, the stride length

and the slope angle between adjacent footsteps are used to

determine whether the pedestrian is walking on a plane or

going up and downstairs. Then the slope-based or plane-based

height constraint algorithm is used to improve the estimated

height accuracy in Foot-PDR.

The other extreme scenario is the escalator or lift. Usually,

escalators run at a constant speed. When a pedestrian stands

relatively static on the escalator, the specific forces measured

by the foot-mounted IMU are almost all derived from local

gravity. The gravity information can be fused in a tightly

coupled manner in the WHU-GNSS solution, so the drifting

error can be constrained even when a pedestrian stands still

on an escalator. Moreover, when the pedestrian takes a lift,

the specific forces (i.e., the accelerations) will exhibit clear

acceleration motion and deceleration motion process. The

vertical (up or down) velocity information of the pedestrian
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can be estimated using acceleration and deceleration motions.

Thus, the vertical velocity can be as observation information

to improve the performance and stability of the Foot-PDR.

Many ferromagnetic materials exist in indoor building struc-

tures. So, magnetometers cannot be used to determine the

heading angle in Foot-PDR directly. Yet, combined with a

rough position, the magnetic field signals can recognize similar

areas when the pedestrians return to places they have walked

before. This meaningful information can help improve the

robustness of Foot-PDR in practical application.

The Foot-PDR is integrated with GNSS signals in a loosely-

coupled manner [42]. Satellites with small elevations should

be discarded to avoid the gross error as much as possible.

Besides, some measurements with low quality judged by

the innovation vector’s magnitude and covariance need to be

rejected in the Kalman Filter (KF). Furthermore, the adaptively

robust filtering algorithm is used to control the effects of

inaccurate measurements in the WHU-GNSS solution and

improve system accuracy.

The optimal inertial sensor parameters (i.e., the bias insta-

bility of gyroscopes and accelerometers, the angular random

walk, and the velocity random walk) are determined through

the provided long-term static data. The magnetometer is also

calibrated through the classic ellipsoid fitting method.

2) Team AIR: The pedestrian foot-mounted PDR system

proposed by AIR team is shown in Fig. 22.

Fig. 22: The scheme of foot-mounted PDR system based on

multi-constraint algorithms proposed by AIR team.

In the above framework, five constraint algorithms are

included in the middle modules: Stance & Still Phase De-

tection, the Heuristic Drift Elimination (HDE), the Height

Update Algorithm (HUPT), the Zero-velocity update (ZUPT),

and the Earth Magnetic Yaw. Meanwhile, the Stance & Still

Phase Detection includes two components: the Generalized

Likelihood Ratio Test (GLRT) detector algorithm used under

the condition of the slow and normal pedestrian gait speed, and

the Hidden Markov Model (HMM) detector algorithm used

under the condition of the dynamic and fast pedestrian gait

speed. After that, using the improved HDE and HUPT method

to estimate current position errors, ZUPT is used to estimate

the velocity error, while Earth Magnetic Yaw based on quasi-

Static Magnetic Field (QSMF) method is used to estimate the

heading error.

a) The Multi-Constraint Algorithms: A gait or a walk cycle

consists of two phases: the swing and stance phase. In the

swing phase, the foot is not in contact with the ground. In

contrast, the foot contacts the ground in the stance phase.

GLRT algorithm has obvious advantages for zero speed detec-

tion of stable pedestrian gait velocity, while HMM algorithm

has a good effect for zero speed detection of dynamic and fast

pedestrian gait speed. Thus, the two methods are combined to

achieve the dynamic human stance & still phase detection [49].

When the Stance & Still Phase Detection detects the stance

and swing phases of human foot gait from the data from

IMUs, ZUPT method is used to constraint the velocity di-

vergence [50].

HDE algorithm is a very useful method to constraint the

system’s heading drift, if the indoor reference heading can be

known in advance. In the AIR team method, the initial head-

ing is used to calculate several possible reference directions

of pedestrian walking [48]. Then, unlike the existing HDE

method, which mainly corrects inertia recursive heading, the

closest reference direction is used to calculate the estimate

position at the current footstep, then uses the position error

between the estimate position and the inertia recursive position

to restrain the position divergence. The procedure is shown in

Fig. 23.

Fig. 23: Revise the current step’s inertial recursive position

with the position calculated from the stride heading in the

AIR team system.

Height divergence is a major problem in Inertial Navigation

System (INS)-based foot-mounted PDR system in multi-story

positioning. If a pedestrian is walking on a plane, the slope of

the current stride is approximately zero degree, if that, keep

the height always unchanged. While walking on a staircase,

the method proposed uses the actual slope of the stairs (usually

20 45 degrees) to calculate the height change of the current

stride, which can be used to constrain the height divergence

of the current stride [48]. If pedestrian is on an elevator or

escalator, it mainly can be effectively determined by analyzing

the characteristics of acceleration, especially the acceleration

in the vertical direction.
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The magnetic field is very useful to estimate the heading

of the system, but the magnetic disturbance has a severely

effect on the estimation. In AIR team system, an improved

QSMF method combined with a compass filter is used to

estimate the heading in the perturbed magnetic field [51].

In addition, in areas where pedestrians repeatedly walk, a

series of magnetic sequence information is used for pedestrian

trajectory matching to improve the effect of heading constraint.

3) Team Free-Walking: The positioning system proposed by

team Free-Walking is shown in Fig. 24

Fig. 24: System architecture of proposed pedestrian inertial

navigation based on motion mode recognition proposed by

Free-Walking team.

The Free-Walking system combines data pre-processing,

motion mode recognition, INS mechanization, adaptive zero

velocity detection, ZUPT-aided Kalman Filter (KF) and alti-

tude constraint. The data pre-processing includes sensor cali-

bration, filtering and Coordinate system transformation. After

pre-processing, motion mode recognition algorithms are used

to help adaptive threshold ZUPT detection. Then a ZUPT-

based KF is used to get position information. Meanwhile,

motion mode results is also used to constraint height error.

a) Error-Constraint Method based on Walking Mode: For

pedestrian positioning, the human motion modes describe

the overall movement of pedestrians. The pedestrian motion

modes are particularly important for pedestrian navigation,

while the pedestrian motion modes are variable during the

procedure of pedestrian navigation. Therefore, a walking mode

classifier is designed (see Fig. 25) based on the stacked

denoising autoencoder [52] and temporal Convolutional neural

network (CNN) with attention to recognize eight pedestrian

motion modes [53], [54].

ZUPT-aided INS has ability to suppress navigation errors.

Free-Walking team uses the periodic gait-cycle window to

divide the pedestrian movement into discrete gait cycles; then,

the minimum value in each gait cycle is taken as the zero-

speed state point. The time length of the gait cycle is different

under different motions. The gait-cycle duration is adaptively

adjusted based on the classification result of walking mode

to adapt to various pedestrian motions [55]. Compared to the

existing methods, the proposed method does not need to set

the zero-speed detection threshold, and performs well for zero-

speed interval detection under various pedestrian movements.

The stationary state of the foot during the stance phase is taken

and feeds the zero-velocity information (pseudo-measurement)

into KF to compensate for the velocity, the position and the

attitude errors.

The height errors in Strapdown Inertial Navigation System

(SINS) solution will grow without boundary and cannot be

eliminated by ZUPT measurements. When a user walks on the

same floor, the altitude does not change. The altitude changes

only when the user goes up and down stairs. Therefore,

the vertical displacement of pedestrian is constrained by two

factors: stair height and motion mode. If the height of each

stair in a multi-floor building is fixed, the height of each gait

cycle is determined by the number of walking stairs in that

gait cycle. Therefore, the classification result of walking mode

is used to constrain the height error.

4) Team BHSNIP: The Pedestrian Navigation System (PNS)

based on Inertial navigation system–extended Kalman filter–

zero velocity update (IEZ) –also referred as INS-EKF-ZUPT–

is widely used in complex environments without external

infrastructure owing to its characteristics of autonomy and

continuity. However, due to the poor observability of heading

errors to ZUPT and the instability of vertical inertial channels,

further corrections of the estimated trajectories under the

IEZ framework are still needed to obtain higher positioning

accuracy.

In order to achieve high performance for PNS in

terms of accuracy and robustness, BHSNIP team integrates

the Micro-Electro-Mechanical Systems–Inertial Measurement

Unit (MEMS-IMU) and Global Positioning System (GPS) as

shown in Fig. 26. In this scheme, MEMS-IMU provides the 3-

axis accelerometer, 3-axis magnetometer, and 3-axis gyroscope

readings which are [fx fy fz], [magx magy magz], and [ωx

ωy ωz] in the body frame, respectively. The main work has

the following features:

1) Aiming at the weakly observability of heading drift

for MEMS-IMU, the iHDE algorithm is proposed. The

algorithm has the following three steps: First, head-

ing information is extracted from pedestrian’s straight-

line motion track, which is used to construct four or

eight datum directions of the building; second, building

heading information is utilized to estimate yaw errors

of trajectories that satisfy specified rules; and third,

these yaw errors are utilized as the EKF observation

to estimate the state error of the navigation parameters.

2) In order to deal with the problem that the inertial vertical

channel is unstable under the traditional IEZ framework,

which makes it impossible to locate the floor by SINS

solutions, the improved step height equidistant (ISHE) is

exploited. At the beginning, the adaptive network-based

fuzzy inference system (ANFIS) is used to identify

different vertical modes including elevator, escalator

and staircase (walking upstairs, horizontal movement,
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Fig. 25: Pedestrian walking mode recognition based on the stacked denoising autoencoder and temporal convolutional

network with attention in the Free-Walking team system.

Fig. 26: Scheme of BHSNIP team positioning system.

and walking downstairs). Then, the floor information or

altitude is estimated by ISHE.

3) To detect the stance phase accurately, adaptive-ZUPT

algorithm is used based on backward neural network. In

conventional researches, positioning performance is eas-

ily affected by the ZUPT with fixed threshold, because

it is difficult to determine ZUPT conditions for jump,

fast walking, running.

4) GPS is fused with MEMS-IMUMEMS-IMU through

Robust Extended Kalman Filter (REKF), which can

remove the contaminated points of GPS signal. What

is more, GPS can provide global coordinates.

Fig. 27 shows the horizontal trajectory. The estimated track

starts from the red circle and the blue line represents the

moving trail of the pedestrian based on the proposed method.

The positive direction of abscissa and longitudinal represents

East and north respectively. The track in the figure is shown in

relative coordinates that will be transformed into the WGS84

coordinate system.

Fig. 28 illustrates the three-dimensional trajectory. The

estimated track also starts from the red circle and the blue

line represents the moving trail of the pedestrian based on

Fig. 27: Estimated horizontal trajectory by Team BHSNIP

for Track 4 of IPIN Competition 2020.

the proposed method. The x-axis, y-axis and z-axis of the

coordinate system represent east, north and up respectively.

The relative coordinates representing the track in Fig. 28 will

be transformed to the WGS84 coordinate system.

VI. TRACK 5: XDR CHALLENGE IN MANUFACTURING

2020

A. Track Description

The purpose of Track 5 is to evaluate the practical perfor-

mance of indoor localisation methods under realistic industrial

scenarios. Indoor localisation competitions have been held,

named “PDR Challenge” or “xDR Challenge” as the official

competitions or the relevant event in past IPIN conferences.

Track 5 is a sequel of the PDR/xDR Challenge series compe-

tition, which is named as “xDR Challenge in Manufacturing

2020”. In this year’s competition, the competitors are asked

to estimate the trajectory of employees working in the factory

and forklifts driven in the factory.

As specific industrial scenarios, the target for PDR Chal-

lenge 2017 and xDR Challenge 2018 were picking operation in
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Fig. 28: Estimated 3D trajectory by Team BHSNIP for

Track 4 of IPIN Competition 2020.

a warehouse [56], while for xDR Challenge 2019 it was serv-

ing in a restaurant and manufacturing operations in a factory.

The scenario of the competition for 2020 was manufacturing

operations in a factory. Competitors were required to estimate

operators’ trajectory and forklifts’ trajectory in the factory by

utilising indoor localisation methods based on dead reckoning

algorithm, positional correction methods with Bluetooth Low

Energy (BLE) beacons and other information provided.

Characteristics of Track 5 can be summarised as follows:

1) Utilising the data actually used in the operation: Similar to

other Tracks, Track 5 aims to compare practical performance

of indoor localisation methods or systems under realistic

industrial scenarios. Its most remarkable characteristic is that

the data provided to competitors is obtained from by an

analysing system for manufacturing operation which was used

during real operation [57], after approval of provision of the

data actually used.

The operators are carrying Android devices which measure

sensor data for the analysis based on indoor localisation.

This means that in Track 5 data is not provided by an actor

following a predetermined path, but by real operators doing

their daily job. This adds significant difficulty in estimating

the trajectory with respect to other Tracks, mostly because

the target movements include various types of motion during

the manufacturing operations, rather than simply walking at

constant speed and staying still for a while.

As the data set, we provided measured sensor data that

include angular velocity, acceleration, magnetism, atmospheric

pressure, and RSSI of BLE beacons. Also, partial ground

truth positions are provided for correcting the position. These

ground truth data are assumed to be available from the record

of the operations and required for long-term estimation by

indoor localisation. The lengths of the data are in units of

working hours. The lengths per data are about 2 hours to 7

hours.

2) Evaluating dead reckoning methods for various types of

moving objects: The PDR/xDR Challenge series competitions

deal with indoor localisation methods based on various types

of the dead reckoning methods. Dead reckoning for vehicle

is called Vehicle Dead-Reckoning (VDR). The term “xDR” is

used to indicate various types of dead reckoning. The target

of the Track 5 is not only operators working in the factory,

but also forklifts driven in the factory. Dead reckoning of the

vehicle such as the forklifts is a quite challenging topic. Thus,

there are two separated sub-Tracks for PDR and VDR.

3) Multi-faceted evaluation of performance for indoor local-

isation methods: In order to evaluate practical performance

under industrial scenarios, multi-faceted evaluation metrics has

been used. The evaluation metrics in the PDR/xDR Challenges

has been revised. As the evaluation metrics for this year’s

competition, a three-evaluation indicators and three-negative

check criteria were adopted as follows:

Evaluation indicators about error

• Absolute error – Circular Error (CE): absolute 2D posi-

tional error compared with ground truth position.

• Error distribution bias – Circular Accuracy (CA): eval-

uating degree of bias of error distribution in 2D error

space.

• Error accumulation gradient (EAG): evaluating speed of

error accumulation caused by relative tracking with dead

reckoning.

Negative Checks

• Requirement of moving velocity: checking if local mov-

ing speeds in the trajectory are less than a defined

threshold.

• Requirement of validity of trajectory: checking the incur-

sion of the trajectory into un-walkable area.

• Coverage ratio: check if each evaluation point has corre-

sponding submitted results.

Each evaluation indicator and criterion are converted into

evaluation indexes up to 100 and weighted summed for

calculating the integrated index which determines the winner

of the competition. We adopted median of CEs (CE50) as

an indicator of the absolute error. The error accumulation is

the one of main concerns in relative tracking method such

as xDR. In order to evaluate the error accumulation, BLE

signals in the data set have been intentionally and partially

deleted [56]. Partial ground-truth position is provided for error

correction and for evaluating the speed of error accumulation

from the correction points where the ground truth position

is provided. Competitors are required to deal with these

unique characteristics of the data set. CE75 has not been

used for determining the winner, but only for comparison

according to the EvAAL framework. However, CE75 can be

easily calculated by using our evaluation script for calculating

evaluation indicators and negative checks. Please refer to the

script shared on the GitHub for further details [58].

B. Competition area

The target field for the PDR subtrack is shown in Fig. 29.

The target field of the VDR subtrack is shown in Fig. 30. We

provided some examples as sample data sets. In the figures,

examples of the movements of an operator and a forklift

are shown in blue dots. The yellow dots represent examples

of the partial ground truth data for correcting the positional

errors. The black coloured areas represents the un-walkable

areas. Competitors are able to avoid the incursion into the

un-walkable area by using map matching techniques. BLE
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beacons are arranged in the target area for absolute localisation

and positional correction. According to the demands of the

factory for maintenance, solar-powered BLE beacons, Fujitsu’s

PulsarGum, are used. The interval of signal emission is 1.26 s

at minimum, but it is not guaranteed and varies in proportion to

the amount of generated electricity. Competitors are required

to deal with this characteristic of the beacon.

Fig. 29: The target area of PDR subtrack in Track 5

Fig. 30: The target area of VDR subtrack in Track 5

C. Indoor Positioning Solutions Provided By Competitors

1) Team KawaguchiLab: Team KawaguchiLab has studied

IMU-based indoor localization using smartphone. In the 2020

competition, the challenge was to integrate KawaguchiLab

IMU-based research with non-IMU sensor based system (BLE,

map information), and to build a robust indoor positioning

system. KawaguchiLab system is simple because it makes

no complex assumptions. Therefore, even in a Track 5 envi-

ronment where there are few movement constraints, it works

robustly, although there is a trade-off for some loss of accu-

racy. Fig. 31 shows overview of KawaguchiLab team system.

Fig. 31: The scheme of three steps indoor localization

system of KawaguchiLab team system.

It consists of three phases: denoising, dead reckoning, and

compensation.

a) Denoising phase: Gyroscopes have an offset that de-

pends on the inherent characteristics of the sensor and tem-

perature. It causes a serious cumulative errors in dead reckon-

ing. Hence, they are removed using real-time offset removal

algorithm: First, whether the sensor is stationary or moving

is obtained with an Fast Fourier Transform (FFT) based

method; second, the offset by averaging the angular velocity

while stationary is calculated. Finally, the angular velocityis

calibrated using the latest updated offset.

b) Dead reckoning phase: In speed estimation, Deep Neural

Network (DNN) base method is used [59]–[61]. Deep neural

network architecture consist of Long Short-Term Memory

(LSTM) and full-connected layer LSTM extract time series

features of 3-axis acceleration by sliding window and full-

connected layer converts time series features to speed. This

approach gains robustness to noisy data and work with various

gaits.

In heading estimation, first, gravity direction ĝDCS

is estimated using Multiplicative Extended Kalman Filter

(MEKF) [62]. DCS represents the device coordinate system.

Secon, angular velocity ωDCS is projected to gravity to get the

horizontal angular velocity ω̂GCS
z . GCS represents the global

coordinate system. Projection process is as follows:

ω̂GCS
z = −ω

DCS · ĝDCS

‖ĝDCS‖ (8)

Finally, the heading is calculated by integrating time-series

horizontal angular velocity. Integration process is as follows:

ĥ =
∑

ω̂GCS
z dt (9)

c) Compensation phase: Pseudo reference position from

BLE signal is generated to compensate trajectory. BLE signals

are searched using sliding window for about 10 s. Then, the

distance from BLE beacon to subject is estimated using three

or more BLE signals. A pseudo reference position by using

these distance.

Similarity transformation model [63] is used to compensate

the trajectory using the true reference position and pseudo

reference position. The parameter of this model is updated

using similitude ratio. The similitude ratio s is calculated by

using actual moving distance d and estimated moving distance
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de.

s =
d

de
(10)

The parameter alpha is updated by multiplying similitude ratio

(α0 = 1).

αk = sαk−1 (11)

Finally, the α is multipied to the estimated position change.

The path is generated using map image as physical con-

straints to avoid obstacles. The shortest path from one ref-

erence point to the next one is calculated and with astar

algorithm the next reference point is searched.

2) Team YONAYONA: YONAYONA team indoor position-

ing technology is implemented in two stages: absolute position

determination using BLE signals and map matching using

map information. Using the acceleration and angular velocity

measured by the IMU is a relative positioning approach, which

often causes drifting errors. Therefore, YONAYONA system

first efficiently estimates the location based on the RSSI,

position, and signal strength parameters, and then corrects

for the natural behavior of the person’s walking speed and

direction. A major challenge for this algorithm is to deal with

the situation when the number of observed BLE beacons is not

enough or when there is a wall between the previous predicted

position and the next predicted position.

a) Absolute position determination: Since the number of

BLE beacons observed is not constant, absolute positioning

is calculated by selecting three beacons with high RSSI at a

certain time (every 0.5 s in this implementation). The distance

between the observer and the beacons can be computed by

RSSI and Ptx (measured RSSI 0.1 m away from the beacon).

As a result of trying various approaches to estimate the

position based on the distance data, such as trilateration,

position averaging, and position averaging with power value

weighting, the average-weighted method, which has the least

error, is applied in this algorithm.

b) Map matching: In this section, an algorithm is build

to predict realistic human movement based on the map data

provided by the competition organizers. In cases where a line

connecting two points estimated by absolute surveying would

encroach into a wall, an inaccessible point with a nearby

accessible one is replaced. Then, the estimated points are

connected with each other in a smooth trajectory so that the

walking speed can be kept within a sensible range.

c) Problem: This algorithm relies on absolute position

estimations, which makes it difficult to deal with situations

where there is a large error in the value of the signal received

from the beacons, or where the number of signals received is

not sufficient. In this implementation, the estimation accuracy

within the Absolute Localization Inapplicable Period (ALIP)

time set at a specific time was reduced, resulting in a larger

error. In fact, there were not enough time to build an algorithm

that also implemented PDR and VDR by the competition

deadline, so it is not possible to refer to relative positioning.

A possible improvement to this technique is to design a robust

system using the Kalman Filter (KF) from two estimates, one

for absolute positioning and one for relative positioning.

VII. TRACK 6: SMARTPHONE-BASED VEHICLE

POSITIONING WITHOUT ADDITIONAL EQUIPMENT

A. Track Description

The goal of Track 6 is to evaluate the performance of

different integrated navigation solutions based on the sensors

of vehicle-mounted smartphone, such as GNSS, MEMS and

magnetometer, etc. A Huawei mate20 smartphone was used

to record raw multi-sensor data in the vehicle scene and

a reference system based on Differential Global Navigation

Satellite System (DGNSS) and Fiber Optic Gyro Inertial

Navigation System (FOG-INS) with an expected accuracy of

5 cm at 1 Hz provided the ground truth. Two data sets were

provided. The first one containing the ground-truth reference

was used for sensor and algorithm calibration. The second

one was for the calculation of the coordinates and accuracy

evaluation.

Fig. 32: The test route and GNSS condition of Track 6

B. Competition area

The test route of Track 6 (see Fig. 32) includes an outdoor

scenario with unobstructed satellite view, an attenuation sce-

nario with partially obstructed view and an indoor scenario

without satellite view. In the test process (see Fig. 33),

there were several long interruptions of GNSS signal and

an irregular test route was adopted. Besides the navigation

measurements derived from the sensors installed in smart-

phone, there were no external aid information and no prior

knowledge of the test route. The competitors could only rely

on smartphone to calculate the vehicle position.

The test area of Track 6 was selected in Haidian airport

and surrounding areas, Beijing. The whole test route was about

19 km and consisted of two phases: the initial alignment phase

and the final evaluation phase. The initial alignment phase was

carried out in an open sky scene. It can be specifically divided

into the sensor calibration stage (traverse the posture states,

about 3 minutes), the static initial alignment (about 5 minutes),

and the dynamic alignment (several running, stop and turn

around, about 15 minutes). The evaluation stage was carried

out in the scene of GNSS signal obstruction and simulated

interruption. It can be specifically divided into three stages:

1) frequent GNSS signal attenuation stage: obstructed

buildings, tree shades, etc. – about 25 minutes;

2) simulated GNSS absent signal stage: completely inter-

rupted, simulated by turning off the Mobile phone GNSS

positioning function;
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Fig. 33: The test process of Track 6

3) indoor parking stage – about 3 minutes.

Following the EvAAL evaluation criteria, the 75% hor-

izontal positioning error of competitors output points was

evaluated.

C. Indoor Positioning Solutions Provided By Competitors

1) Team WHU&AutoNavi: WHU&Autonavi Team system

uses GNSS/INS integrated positioning as the basic algorithm

and focus on making full use of vehicle motion constraint

information and magnetometer observations to provide stable

positioning services. Fig. 34 shows the flowchart of the vehicle

integrated positioning algorithm based on smartphone built-in

sensors. And the algorithm can be divided into 3 parts: 1)

GNSS/INS integrated positioning algorithm (the red dotted

part), 2) the vehicle motion model constraints (the orange

part), and 3) magnetic heading constraint (the green part).

Fig. 34: Flowchart of the vehicle integrated positioning

algorithm based on smartphone built-in sensors of the

WHU&Autonavi Team system.

a) GNSS/INS integrated positioning algorithm: GNSS/

INSintegrated positioning is the most basic and backbone

algorithm in vehicle positioning scenarios. INS is used as

a bridge to correlate all available observations, and GNSS,

as the only available absolute positioning method in the

offline mode of the smartphone, determines the positioning

performance of the system.

INS mechanization is employed to integrate the gyros and

accelerometer output. Due to the low performance of the

smartphone built-in sensors, the influence of the angular rate

and sculling effect caused by the rotation of Earth and motion

speed can be ignore [64], [65]. Therefore, the rigorous INS

mechanization can be simplified to achieve more efficient

calculations.

An Extended Kalman Filter (EKF) is employed to fuse

GNSS and INS for reducing the error caused by non-linearity.

And the 20-dimensional navigation error state includes po-

sition, velocity, attitude, gyroscope bias, accelerometer bias,

misalignment angle (the angular difference between the smart-

phone built-in sensor and the vehicle coordinate system), and

the lever arm parameters (the offset of the sensor measure-

ment center to the center of the vehicle coordinate system).

To maximize the navigation performance of the sensor, the

performance parameters of the gyroscope and accelerometer

are adjusted according to the three sets of training data given

by the competition.

For smartphones, the distance between the GNSS antenna

and the IMU measurement center is very close (e.g., several

centimeters), and the GNSS position accuracy in single-point

positioning mode is at the meter level, so the GNSS antenna

and the IMU measurement center can be considered to over-

lap. Besides, since the standard deviation cannot accurately

determine the true positioning accuracy of the GNSS position,

the chi-square test is used to eliminate the gross errors in the

GNSS position to ensure the reliability of the filtering [66].

b) Vehicle motion model constraints: To deal with scenarios

where GNSS signals are interfered in a complex environ-

ment, the vehicle motion constraint model is fully used to

improve the relative positioning capability of the system.

WHU&Autonavi ystem simply divides the vehicle motion

state into stationary and moving by using the raw output of

gyroscope and accelerometer.

Stationary State: When the vehicle is judged to be sta-

tionary, it can be considered that the speed of the vehicle

is zero, that is, Zero-velocity update (ZUPT). ZUPT is an

effective means to control the accumulation of velocity error.

At the same time, the heading of the vehicle should remain

unchanged, and all heading errors can be considered to be

caused by sensor errors. The WHU&Autonavi system stores

the heading angle at the initial moment of the stationary

period and constructs a virtual heading angle observation

value, so as to achieve the purpose of effectively controlling
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the accumulation of heading angle error, called Zero Integrated

Heading Rate (ZIHR) [67].

Motion State: For the normal driving behavior of ordi-

nary users, the vehicle will only move forward or backward.

Based on such objective facts, it can be assumed that the

lateral and vertical speeds in the vehicle coordinate system

(that is, the v system) are always zero [67]. However, the

forward speed of the vehicle still cannot be accurately ob-

tained. WHU&Autonavi Team system uses rticl supervised

learning method to train the vehicle forward speed prediction

model [68], and the error can be controlled within 0.5 m s−1.

Due to the random disassembly and reinstallation of the

smartphone, the problem of the installation angle and lever

arm parameters is not fixed. At this time, traditional direct

setting or pre-calibration methods do not have the conditions

for implementation. Automatic calibration of the installation

angle and lever arm parameters can make the vehicle motion

constraint algorithm more applicable.

c) Magnetic heading constraints: The magnetic interference

caused by the vehicle shell can be equivalent to the magne-

tometer bias. So, the heading angle calculated based on the

magnetometer observations can still accurately reflect the true

heading angle change after the calibration and deduction of the

magnetometer bias. Besides, the quasi-Static Magnetic Field

(QSMF) is employed for avoiding environmental magnetic

interference [69].

2) SZU-Mellivora Capensis: The data collection of Track 6

is located near the Beijing Haidian Airport. Its goal is to eval-

uate the performance of vehicle navigation solutions based on

the integration of different sensors such as GNSS, MEMS, and

magnetometers on in-vehicle smartphones. This test is under

typical urban road conditions. The smartphone is fixed inside

the vehicle, and data is collected through the phone sensor. A

single test process lasts about 1 hour and the test route consists

of static initial alignment phase (about 5 minutes), open

environment phase (about 20 minutes), obstructed environment

phase where the GNSS signal is attenuated or blocked by the

surrounding buildings or trees (about 25 minutes, during which

the GNSS positioning results will be frequently interrupted)

and no GNSS signal phase (underground parking lots about

10 minutes, with no GNSS positioning results). The driving

process of the test vehicle includes going straight, left/right

turning, reversing and parking

To get the update of the vehicle’s position, SZU-Mellivora

Capensis team system obtain its velocity and heading. As for

the velocity update, the system uses accelerometer and gyro-

scope, extract their data and align the coordinates, and then

train them through proposed Deep Neural Network (DNN) to

get the predicted velocity. The same is true for the heading

prediction, but raw data used comes from the gyroscope, the

magnetometer and the AHRS. Based on the prediction of

velocity and heading, the relative displacement of the vehicle

can be inferred. Then, the federated filter is used for data

fusion. The weight factor is modified through observability

to improve the filter and achieve high-precision localization.

Finally, a smoothing filter is applied in this method.

The traditional inertial dead-reckoning mentioned above to

estimate the motion of the vehicle is a challenging problem. To

reduce this unavoidable inertial drift, a data-driven approach is

used to inertial tracking. Referring to the network structure on

IONet, the motion state of the vehicle is predicted by a trained

deep Recurrent Neural Network (RNN). The RNN maintains

the local hidden state within a time window, and then extracts

the potential features of the time series. These features affect

the state output at the next moment, thus enabling an effective

recovery of the potential connection between data features

and vehicle motion. The time window size is chosen as 1 s

(50 frames). The data within the window are (n × 3 × 50)
dimensional long-term dependent feature vectors constructed

by stacking aligned n sensors. The changes of ∆ v and ∆ h

in 1 s can be predicted by Equation 12:

(v,∆h) = RNN((ai, wi,mi, gi)
T

t ) (12)

Unlike previous data-driven-inertial tracking work, the re-

gression of the displacement vector is split into two separate

parts: velocity estimation and heading estimation. The division

of the regression task reduces the impact of extraneous sensors

on prediction accuracy. In the velocity estimation part, input

data are the 3-axis accelerometer and 3-axis gravity sensor data

for a one-second period, which are corrected for the coordinate

system alignment described above. The output is the average

velocity over this time period, based in the two-dimensional

plane. In the heading estimation section, input data are the 3-

axis gyroscope and 3-axis magnetometer data during the time

period, and the output is the sum of the heading changes in

one second. The above input data is the best combination of

sensors after the experiments performed.

Fig. 35: The RNN framework of the proposed method by

ZU-Mellivora Capensis team.

Fig. 35 shows the RNN framework proposed in this system.

A two-layer Long Short-Term Memory (LSTM) is used as the

core module to solve the gradient explosion and vanishing

problem of traditional RNNs, and it can effectively exploit

the long-term dependence of time series. Each LSTM layer

has 256 hidden nodes well above the dimensionality of the

input data. This is in order to give enough inputs to the

LSTM units so that the LSTM can fully utilize its function of

selecting useful information. To avoid the overfitting problem,

a dropout layer is added after each LSTM layer to increase

the orthogonality between the features in each layer. Finally,
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a fully connected layer is placed to regress the velocity and

heading changes, respectively. The loss function is defined in

terms of the mean square error between the motion parameters

and the ground truth. The ADAM optimizer is chosen to

minimize this loss value and learn to obtain the best parameters

within the RNN.

After obtaining the velocity and heading, the trajectory

points can be expressed as:

{

x = x0 + vdt · cos(h0 +∆h)
y = y0 + vdt · sin(h0 +∆h)

(13)

3) Team YAI: YAI Team system uses three types of sensor

data in this competition, namely ACCE, AHRS, GNSS. In

the data pre-processing part, the ACCE and AHRS data were

averaged per second to obtain data with a frequency of 1 Hz,

while the missing GNSS were marked. First, the displacement

of the vehicle per second is obtained by adding the initial

velocity of the original GNSS to the ACCE data. Then, the

YAW angle data of AHRS is initialized. After setting the

initial direction angle, the angle ranges from minus 180 to

180 degrees.

The proposed framework used Kalman Filter (KF) for

tracking. Fig. 36 shows the flow chart of the proposed tracking

framework. The prepossessed data was introduced into the

Kalman filter and GNSS to get KF gain to correct the error.

Because the KF relied on the previous path to calculate,

it does not work well during the missing section and may

produce significant cumulative errors, especially when the

device encounters a large-scale angle variation. Fig. 37 shows

the estimated driving direction during the testing period. The

angle variation is obtained by the difference among a short

period, 5 s in this competition. The framework calculated the

missing sections of each route depending on the degrees of

the angle variation with a threshold of 90 degree. For the

small-scale angle variation, the above method was used to

compensate for the missing section. For the large-scale angle

variation, the KF was changed to one-dimensional to address

this issue. To be more specific, KF gain is let to not change

the lateral displacement, while only affecting one-dimensional

displacement. Afterwards, the AHRS is directly multiplied

instead to estimate the direction of travel.

VIII. TRACK 7: CHANNEL IMPULSE RESPONSES

A. Track Description

Environments with complex Radio-Frequency (RF) propa-

gation conditions such as indoor, urban or industrial environ-

ments have been a challenge for the RF positioning community

for a long time. Especially in industrial environments, the

abundance of metal objects causing absorption, reflection,

diffraction and scattering of the signals leads to highly com-

plex signal propagation that is hard to model analytically.

Therefore, classic RF positioning methods relying on multi-

angulation or multi-lateration are difficult to apply.

Received Signal Strength (RSS) based positioning exploit-

ing the spatial significance of the propagation conditions has

been used in these environments for many years. However,

recently the use of Channel Impulse Responsess (CIRs),

Fig. 36: Flow chart for the proposed tracking framework of

YAI team system.

Fig. 37: The estimated driving direction during the testing

period, where the horizontal axis is time with the unit

second and the vertical axis is the estimated angle.

containing information on the whole signal propagation path,

including Multipath Component (MPC) has been proposed.

While the specialised hardware and firmware components used

to obtain these signals are not yet available in mass user prod-

ucts like smartphones, the introduction of Ultra-Wide Band
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(UWB) technology into newer generations of devices means

that CIR-based positioning is a promising possibility even for

low-cost applications in the near future. Since CIRs contains a

variety of spatial and environment-related information, it has

been used for positioning in three different ways:

• Model error mitigation [70], [71]: CIRs are used to

classify propagation conditions like a missing line-of-

sight (LoS) link or to estimate model errors caused by

multipath components. The goal is to use CIRs to enhance

classic positioning methods.

• Fingerprinting [72], [73]: CIRs is assumed to be spatially

significant and the relation of the signal propagation to

the environment is exploited for positioning by implicit

modelling using a set of pre-recorded training data.

• Multipath-SLAM [74]–[77]: CIRs is used to jointly es-

timate the position of virtual anchors (i.e. characteristic

reflection points) or other significant features and the user

positions.

Since, in recent years, many research groups have been

working on CIR-based positioning in adverse environments,

a data set to compare different approaches under a common

evaluation framework is highly beneficial to the community.

Hence, a robotic scenario data set has been introduced using

the popular Decawave DW1000 UWB chip. For this, an

industrial environment in a testing hall has been reconstructed,

equipped with state-of-the-art positioning reference systems.

B. Competition area

The environment resembles an industrial setting: it includes

metal shelves, industrial vehicles and other objects that in-

fluence the radio signal propagation in the environment. The

measurement setup is depicted in Fig. 38: the stationary anchor

nodes (highlighted with red boxes) are placed around the

area and the mobile node (highlighted with a green circle)

is attached to a wooden table to ensure a constant height.

The measurement setup was such that the mobile node was

configured as a transmitter and the stationary anchor nodes

were configured as receivers. The wooden table was moved

throughout the environment at constant speed (as best as

possible). Hence, the environment and data resembles a robotic

scenario.

Fig. 39 shows the distribution of the acquired data within

the environment. The trajectories of the transmitter nodes

are in-between the various objects; the size of the area is

Fig. 38: Measurement setup. The industrial environment

consists of metal shelves and industrial vehicles. The

Receiver/Anchor tags are highlighted with red boxes, the

transmitter/mobile node is highlighted with a green circle.

1

2

3

4

5

Fig. 39: Data distribution of the recorded data set. The

objects in the environment are indicated in green: Metal

shelves filled with goods (1) and (3); industrial vehicles (2)

and (4) and a large metal box (5). The anchor node positions

are depicted as red squares.

approximately 1 m × 20 m. In total, about 300,000 channel

impulse responses were captured over a time period of ap-

proximately 1.5 h. The sampling interval of the data was

about 10 Hz. For clearance, a constant sampling interval is

not available, as straightforward re-sampling of CIR data is

not possible because of the complexity of the signals. Of

these, a temporally coherent set of 230,000 CIRs is available

for training purposes, while another coherent set of 70,000

data points is used for testing/evaluation. This corresponds to

exactly 20 minutes of recording time. A detailed description

of the file format and the system specifications as well as

downloadable links for the anchor/node configuration and

the training and test data is available at http://evaal.

aaloa.org/images/2020/ta7-v4.pdf.

C. Indoor Positioning Solutions Provided By Competitors

1) Team YAI: First, the proposed system by team YAI

converts the real and imaginary parts of the Channel Impulse

Responses (CIR) into the magnitude, where the phase informa-

tion is removed [78], [79]. All CIRs collected were organised

by each receiver at the same location and at the same time.

After processing the CIR signals, the proposed system

utilizes deep learning to build a mapping between the CIR

magnitude and location. In the indoor environment, the size of

1 m2 is taken as a grid, and then the position where the existing

data appears is divided into 15 g × 19 grid cells, numbered 0–

284. Then, each grid is regarded as a class and each classifier

is trained for a reviewer. This way, the positioning problem

can be viewed as a classification problem. A typical machine

learning DNN follows, to train a classifier for a receiver.

In the learning procedure, the temporal magnitude CIR is

directly regarded as a static feature vector to learn the grid

information by DNN. The DNN network architecture used

in the experiments include 8 layers, 465,373 neurons, and

the activation function is softmax. A categorical-crossentropy

follows to train the network parameters. Fig. 40 shows the

network architecture of the used DNN. Finally, six receivers

contain six independent classifiers that are able to convert the

CIR magnitude into a grid.

Finally, the proposed system uses an ensemble approach to

http://evaal.aaloa.org/images/2020/ta7-v4.pdf
http://evaal.aaloa.org/images/2020/ta7-v4.pdf
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Fig. 40: The network architecture of the used DNN for

CIR-based positioning of YAI team proposed system.

combine the estimation results from the six classifiers. In order

to make the final answer more precise, the voting method is

used first. That is, the final result is obtained by the majority

voting from the six receivers. If voting from the six receivers

results in a tie, the proposed system will select the receiver

that contains the strongest CIR magnitude. This is under

the assumption that the strongest CIR magnitude encounters

less deviation and interference. The answer reported by that

strongest receiver is viewed as the final estimation. If all six

receivers have different answers, the proposed system will

choose the one having the best performance at the offline

training stage. Fig. 41 shows the flow chart of the proposed

framework while Fig. 1 shows the final results.

IX. RESULTS AND LESSONS LEARNED

In Track 3 Smartphone 11 teams were registered and

submitted their final results. 9 out of 11 teams scored under

7 m, with the best one at 1 m. Despite the challenges imposed

by the evaluation scenario, with some open areas and a few

unmapped locations, 4 teams achieved a positioning error

lower than 2 m. Competitors had a few months to process the

pre-collected data. The key to success is the sensor fusion

approach, which was adopted by all systems which obtained

a score below 3 m. Kalman Filter (KF) and all its variants are

very popular for this task.

Fig. 41: Flow chart of the system proposed by YAI team for

CIR-based positioning

In Track 4 Foot-mounted IMU 5 teams were registered,

of which 4 accepted to publish their results. There were two

final scores under 7 m. What was really amazing is the score

reached by the winner: 0.5 m on such a scenario is impressive.

The key of success is an excellent implementation of ZUPT.

Techniques seem to be really up to scratch now, at least on

scenarios with a constant walking pattern. For IPIN 2021,

Track 4 plans to add a running pattern for a more challenging

competition.

In Track 5 xDR in manufacturing 4 teams registered and 2

submitted their final results. Final scores (CE75) of the Track

5’s winners is higher than in other Tracks. Considering the

fact that the data are measured in actual industrial situation,

the achieved results in PDR-subtrack can to be regarded as

positive.

The results in the VDR sub-track are worse than expected,

exceeding 7 m. One possible reason is the lack of BLE

beacons in the area of the VDR sub-track. Another one may

be the lack of awareness surrounding VDR methods: maybe

educational campaigns are needed to spread knowledge about

VDR methods among researchers and practitioners.

In Track 6 On-vehicle smartphone 3 teams were registered

and submitted their final results. Two final scores were under

30 m, with the best one at 7 m. The key of success is the perfect

use of vehicle motion constraint information and magne-

tometer observations including ZUPT, ZIHR, Non-Holonomic

Constraints (NHC) and magnetic heading. Considering the

long interruptions of GNSS signal in the test data, more to

the point is to maintain the vehicle heading accurate.
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In Track 7 Channel impulse response only one team

participated in the competition, reaching an evaluation score

of 1.4 m. We expect future editions to see more widespread

participation in this Track which is focused on a still little-

known, leading-edge method.

A. Lessons Learned

Maybe the most important results of the IPIN competition

are comments made by competitors and observations made by

Track chairs about the competing systems performance. Here

we summarise the most important ones.
1) Competitor observations:

• Some competitors reported that the heading estimation

is a critical step for systems based on sensor fusion. It

seems that it only might work well when the smartphone

is held in front of the body. This was mostly the case in

the evaluation trajectory, except for one relatively short

time interval. To improve accuracy, it is necessary to use a

PDR algorithm that can better handle realistic movement

and different walking modes. Thus, more phone carrying

modes are required both at calibration and evaluation

phases to handle realistic scenarios.

• Floor plans are essential for map-based localisation ap-

proaches. It may be beneficial for such competitors to

have access to additional information about the building,

i.e., pictures, videos, etc. The better understanding of

the building with its specifics leads to more informed

decisions regarding the system components and parameter

configurations.

• Some competitors used visual inspection to choose the

final submitted trajectories. This approach is not straight-

forward when comparing two trajectory candidates with-

out knowing the ground truth locations of the evaluation

points. Although it was quite feasible to identify entry

and exit positions for the floor transition in the estimated

trajectories, the path accuracy especially in larger open

areas was difficult to rate. After the competition, know-

ing the ground truth location of the evaluation points,

competitors realised that more rigorous methods for trials

comparison are needed instead of relying in simple visual

consideration.

• Deep learning requires large scale annotation to train

accurate models. As the challenge data is sparsely anno-

tated, one can proceed by pseudo-labelling non-annotated

sensor data. This weak annotation works well in narrow

corridors where the user’s position can be accurately

approximated. However, in open spaces, like in Track 3

Smartphone, weak annotations are harder to get straight.

Approximation of user’s position is less accurate and

this added noise hurts the performance of deep learning

models. This raises the issue of finding alternate ways to

densely annotate sensor data.

• In Track 4 Foot-mounted IMU, there are some special

scenes such as carousels, frequent stair, elevator switching

as well as frequent pedestrian walking modes switching.

Therefore, designing an accurate real-time algorithm to

recognise localisation environment and walking mode is

essential for foot-mounted pedestrian positioning.

• Some competitors for Track 4 Foot-mounted IMU learned

how to analyse the foot-mounted IMU’s signal charac-

teristics in two unique scenes (escalator or lift) as well

as the pedestrian positioning algorithms in these two

unique indoor environments. Because the IMU noise is

different between dynamic and static conditions, it was

possible to fine-tune the sensor parameters based on the

Allan variance. The adjustment method is to meet the

optimal result of zero-speed correction under long-term

static data. Moreover, some re-visits of the trajectory were

found and made use of such valuable opportunities to

correct the drift of foot-INS through close loop adjust-

ment (smoothing like Simultaneous Localization and Map

(SLAM)). How to improve the stability and reliability of

Foot-INS is also an important issue.

2) Track chairs observations:

• Regarding Track 3 Smartphone, this is the fifth year in

a row using the same data collection strategy and format

to store the data. Despite that, it does not lose interest

from the research community and has achieved gradual

improvements in results year after year, showing that

Track 3 is very competitive, and research teams are still

interested in participating. Some teams have reported that

this Track, with the collected data sets, have allowed them

to improve their systems year by year.

• In Track 4 Foot-mounted IMU, this year we witnessed

a wide range of resulting performance, with the winner

doing much better than the other competitors. That means

that in the future Track 4 competition will have to be

more competitive and at the same time will have to pay

attention to let the doors open to new competitors. One

possible solution would be to add complex pattern like

running or jumping; organisers also envisage to use a

novel sensor delivering barometer data in addition to

GNSS, IMU and magnetometer signals.

• For Track 5 xDR in manufacturing, we have kept chal-

lenging new trails in evaluation. Due to the difficulty in

the realistic scenarios and the novelty of the competitions,

some teams gave up before submitting the results; as

a result, the number of the participants was less than

expected. In order to attract more competitors, it is better

to provide chances for using the evaluation framework

and evaluation indicators. Sharing the evaluation scripts

on GitHub will help promoting the evaluation framework.

Moreover, development of the VDR method should be

encouraged for boosting competitions of VDR.

• This was the debut year for Track 6 On-vehicle smart-

phone. Performance of competing system was widely

varied, with the top two teams at about 10 n, which is

within the expected range. In IPIN 2021 an odometer

sensor could be added to make it closer to the vehicle

scene. At the same time, considering that more and more

mobile phones can support differential positioning, dif-

ferential positioning results will be provided to improve

positioning accuracy. In addition, changing the posture of

the mobile phone during the test will be considered, as

this is a typical case in the real scene.
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• Track 7 Channel impulse response is based on CIR, which

is a novel topic and as such has not attracted many

competitors. Since, in terms of RF signalling, most of

the indoor positioning community is focusing on RSS-

or range-based methods, a more detailed description of

CIR- and other channel-based methods, including an ex-

tensive reference to recently published related approaches

could have made the implied positioning task clearer.

Furthermore, an example processing pipeline could have

provided more guidance in handling the data. The amount

of training data could have been reduced to allow for less

computationally demanding computations. In the end, we

believe that interest in this are is bound to grow with time,

given its great promises.

X. CONCLUSIONS

The IPIN Competition has been highly relevant for the

indoor positioning community since the first edition held in

Busan (Korea) in 2014. Based on the EvAAL framework, the

purpose of IPIN competitions is to evaluate positioning solu-

tions from academy and industry in challenging environments,

using realistic procedures on a level field.

For the first time, the 2020 edition did not host on-

site Tracks (Tracks 1 and 2), because of worldwide travel

restrictions. However, the number of off-site Tracks was a

record-high. The evaluation areas included a library building,

a shopping mall, an indoor-outdoor road Track and industrial-

oriented environments.

Of the 21 teams competing online in 2020 in Tracks 3–7,

20 accepted to contribute to this paper and concisely described

their algorithm workflow. This collection is arguably the best

description we can get today of state-of-the-art in personal

indoor localisation systems at the algorithmic level.

21 competing teams and 95 attendants to the final online

event witness a vibrant activity in the personal positioning

field. This activity is focused on creating an environment

where indoor localisation systems can provide general and

cheap ways to position, track and navigate people indoors as

easily as GNSS does outdoors.

Most competitors of smartphone-based systems have em-

ployed as many sources of information as possible for posi-

tioning, making it clear that not only good sensing capabilities

are relevant for positioning, but also rich context information

(maps, images, videos) plays a key role in enhancing position-

ing accuracy.

In the previous section we have presented a short overview

of results. We find them impressive, especially with respect to

what was available just few years ago.

Yet, these observed results highlight a significant gap be-

tween the accuracy reported in the literature and the results

obtained in the competition. It is far too easy to find accuracies

reported in the literature which are unrealistically good with

respect to what we observe in on-site Tracks. What is more

uncomfortable is finding the same even with respect to off-site

Tracks, which generally provide far better results.

This is mostly due to insufficient test and evaluation proce-

dures, as the vast majority of papers in the literature present

results obtained by simulation or trial in a small lab. Some

papers present results obtained in larger areas (usually one

floor of an office or university building) with an actor walking

at a natural pace. Still, very few papers that we know of

consider testing in unfamiliar areas, thus minimising the effect

of building a system tuned to the laboratory environment.

Indoor localisation and seamless location-based services are

enablers for an enormous market that will develop in the near

future. The IPIN competitions have played an essential role in

the academic and industrial research in this field; as far as we

can tell they are going to play it for the foreseeable future as

well.
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Dongyan Wei, Xinchun Ji and Wenchao Zhang.

The team managing Track 7 (Channel Impulse Responses)

was composed by Sebastian Kram, Maximilian Stahlke,

Christopher Mutschler.

The team managing the on-line event competition was

composed by Antonino Crivello, Paolo Barsocchi, Michele

Girolami, and Filippo Palumbo.

All teams represented in this paper have contributed with

the description of their system and their invaluable feedback

about their experiences and lessons learned in the competition:

• Track 3

– Team WHU-Five is composed by Ruizhi Chen (Cor-

responding author, email: ruizhi.chen@whu.

edu.cn), Yuan Wu, Wei li, Yue Yu, Shihao Xu,

and Lixiong Huang.

– Team IOT2US is composed by Chengqi Ma,

Bang Wu (Corresponding author, email: bang.wu@

qmul.ac.uk), Wei Zhang, Yankun Wang, Yonglei

Fan, Stefan Poslad, David R. Selviah and Weixi

Wang

– Team XMU ATR is composed by Lingxiang Zheng

(Corresponding author, email: lxzheng@gmail.

com), Ao Peng and Ge Jin.

– Team NLE is composed by Leonid Antsfeld (Cor-

responding author, email: leonid.antsfeld@

naverlabs.com) and Boris Chidlovskii.

– Team UMinho is composed by Ivo Silva, Cris-

tiano Pendão, Filipe Meneses, Maria João Nicolau,

António Costa and Adriano Moreira (Corresponding

author, email: adriano.moreira@algoritmi.

uminho.pt).

– Team imec-WAVES is composed by Cedric De Cock

(Corresponding author, email: cedric.decock@

ugent.be) and David Plets.
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– Team YAI is composed by Chia-An Yu, Shih-Hau

Fang Fang, Ying-Ren Chien (Corresponding author,

email: yrchien@niu.edu.tw), Chun-Hao Hung,

and Chih-Chieh Yu.

– Team Indora is composed by Miroslav Opiela (Cor-

responding author, email: miroslav.opiela@

upjs.sk) and Jakub Džama.

– Team TJU is composed by Liqiang Zhang (Cor-

responding author, email: zhangliqiang@tju.

edu.cn), Boxuan Chen, Hu Li, Yazhen Liao,

Qingyuan Gong and Yu Liu.

– Team Next-Newbie Reckoners is composed by

Seanglidet Yean (Corresponding author, email:

seanglidet.yean@ntu.edu.sg), Bo Zhi

Lim, Wei Jie Teo, Bu Sung Lee and Hong Lye Oh.

• Track 4

– Team WHU-GNSS is composed of Jian Kuang, Tao

Liu and Xiaoji Niu.

– Team AIR is composed of Wenchao Zhang, Dongyan

Wei and Hong Yuan.

– Team Free-Walking is composed of Qu Wang, Haiy-

ong Luo , Hao Xiong, Linfeng Bao, Pushuo Zhang

and Fang Zhao.

– Team BHSNIP is composed of Xia Ming, Dayu Yan,

Yuhang Li, Yitong Dong and Haitao Jiang.

• Track 5

– Team KawaguchiLab is composed by Takuto

Yoshida, Yoshiteru Nagata, Yuto Fukushima, Nobuya

Fukatani, Nozomi Hayashida, Yusuke Asai, and

Kenta Urano.

– Team YONAYONA is composed by Yoshitomo Yon-

amoto (Corresponding author, email: yonayona@

keio.jp), Masahiro Yamaguchi and Tomoya

Kaichi.

• Track 6

– Team WHU&AutoNavi is composed by Jian Kuang,

Wenfei Ge, Zhi Dou, Aipeng Tang, Xiaobing Zhang.

– Team SZU-Mellivora Capensis is composed by

Baoding Zhou, Xu Liu, Zhining Gu, Chengjing

Yang, Zhiqian Wu, Doudou Xie, and Can Huang.

– Team YAI is composed by Chia-An Yu, Shih-Hau

Fang Fang, Ying-Ren Chien (Corresponding author,

email: yrchien@niu.edu.tw), Chun-Hao Hung,

and Chih-Chieh Yu.

• Track 7

– Team YAI is composed by Nien-Ting Lee, Shih-

Hau Fang (Corresponding author, email: shfang@

saturn.yzu.edu.tw), Ying-Ren Chien, You-

Cheng Jie, Shawn-Rong Young, and Chih-Chieh Yu.
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ACRONYMS

AAL Ambient Assisted Living

AHRS Attitude and Heading Reference System

ALIP Absolute Localization Inapplicable Period

ANFIS adaptive network-based fuzzy inference

system

AP Access Point

API Application Programming Interfaces

BLE Bluetooth Low Energy

BPF Backtracking Particle Filter

CA Circular Accuracy

CDF Cumulative Distribution Function

CE Circular Error

CIR Channel Impulse Responses

CNN Convolutional neural network
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CRP Correction Reference Points

DGNSS Differential Global Navigation Satellite

System

DNN Deep Neural Network

EAG Error accumulation gradient

EKF Extended Kalman Filter

EvAAL Evaluating Ambient Assisted Living

FFT Fast Fourier Transform

FOG-INS Fiber Optic Gyro Inertial Navigation System

GDPR EU General Data Protection Regulation

GLRT Generalized Likelihood Ratio Test

GNSS Global Navigation Satellite System

GPS Global Positioning System

GRU Gated Recurrent Units

HDE Heuristic Drift Elimination

HMM Hidden Markov Model

HUPT Height Update Algorithm

IEZ Inertial navigation system–extended Kalman

filter–zero velocity update

iHDE Improved heuristic drift elimination

IMU Inertial Measurement Unit

INS Inertial Navigation System

IPIN Indoor Positioning and Indoor Navigation

ISHE improved step height equidistant

KF Kalman Filter

KNN k-Nearest Neighbor

LBS Location-based services

LMA Levenberg-Marquardt

LoS line-of-sight

LSTM Long Short-Term Memory

MEKF Multiplicative Extended Kalman Filter

MEMS micro-electro-mechanical systems

MEMS-IMU Micro-Electro-Mechanical Systems–Inertial

Measurement Unit

MPC Multipath Component

NHC Non-Holonomic Constraints

PDR Pedestrian Dead Reckoning

PERSY PEdestrian Reference SYstem

PF Particle Filter

PNS Pedestrian Navigation System

QSMF quasi-Static Magnetic Field

REKF Robust Extended Kalman Filter

RF Radio-Frequency

RNN Recurrent Neural Network

RSS Received Signal Strength

RSSI Received Signal Strength Indicator

SINS Strapdown Inertial Navigation System

SLAM Simultaneous Localization and Map

SVM Support Vector Machine

TOF Time-of-Flight

UWB Ultra-Wide Band

VAE Variational Auto-Encoder

VDR Vehicle Dead-Reckoning

WKNN Weighted k-Nearest Neighbor

ZARU Zero angular rate update

ZIHR Zero Integrated Heading Rate

ZUPT Zero-velocity update
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[47] A. R. Jiménez, F. Seco, F. Zampella, et al., “Improved heuristic drift
elimination (ihde) for pedestrian navigation in complex buildings,”
in 2011 International Conference on Indoor Positioning and Indoor

Navigation, IEEE, 2011, pp. 1–8.
[48] W. Zhang, D. Wei, and H. Yuan, “The improved constraint methods

for foot-mounted pdr system,” Ieee Access, vol. 8, pp. 31 764–31 779,
2020.

[49] W. Zhang, X. Li, D. Wei, et al., “A foot-mounted pdr system based
on imu/ekf+ hmm+ zupt+ zaru+ hdr+ compass algorithm,” in 2017

International conference on indoor positioning and indoor navigation

(IPIN), IEEE, 2017, pp. 1–5.
[50] W. Zhang, D. Wei, and H. Yuan, “Novel drift reduction methods in

foot-mounted pdr system,” Sensors, vol. 19, no. 18, p. 3962, 2019.
[51] W. Zhang, D. Wei, P. Gong, et al., “The pdr system based on

improved qsf+ map matching algorithm,” in China Satellite Navigation

Conference, Springer, 2018, pp. 753–764.
[52] Q. Wang, H. Luo, L. Ye, et al., “Personalized stride-length estimation

based on active online learning,” IEEE Internet of Things Journal,
vol. 7, no. 6, pp. 4885–4897, 2020.

[53] Q. Wang, H. Luo, H. Xiong, et al., “Pedestrian dead reckoning
based on walking pattern recognition and online magnetic fingerprint
trajectory calibration,” IEEE Internet of Things Journal, 2020.

[54] X. Gao, H. Luo, Q. Wang, et al., “A human activity recognition
algorithm based on stacking denoising autoencoder and lightgbm,”
Sensors, vol. 19, no. 4, p. 947, 2019.

[55] C. Yu, L. Haiyong, Z. Fang, et al., “Adaptive kalman filtering-
based pedestrian navigation algorithm for smartphones,” International

Journal of Advanced Robotic Systems, vol. 17, no. 3, 2020.
[56] R. Ichikari, K. Kaji, R. Shimomura, et al., “Off-site indoor localization

competitions based on measured data in a warehouse,” Sensors, vol. 19,
no. 4, p. 763, 2019. [Online]. Available: https : / / doi . org / 10 . 3390 /
s19040763.

[57] T. Kurata, T. Maehata, H. Hashimoto, et al., “Ioh technologies into
indoor manufacturing sites,” in International Conference on Advances

in Production Management Systems, vol. 567, Springer, 2019, pp. 372–
380. [Online]. Available: https://doi.org/10.1007/978-3-030-29996-
5\ 43.

[58] Xdr-challenge-2020-evaluation, https://github.com/PDR-benchmark-
standardization - committee / xDR - Challenge - 2020 - evaluation, Ac-
cessed: 2021-03-28.

[59] T. Yoshida, J. Nozaki, K. Urano, et al., “Gait dependency of smart-
phone walking speed estimation using deep learning (poster),” ser. Mo-
biSys ’19, Seoul, Republic of Korea: Association for Computing
Machinery, 2019, 641–642. [Online]. Available: https : / /doi .org /10 .
1145/3307334.3328667.

[60] T. Yoshida, J. Nozaki, K. Urano, et al., “Sampling rate dependency
in pedestrian walking speed estimation using dualcnn-lstm,” ser. Ubi-
Comp/ISWC ’19 Adjunct, London, United Kingdom: Association for
Computing Machinery, 2019, 862–868. [Online]. Available: https : / /
doi.org/10.1145/3341162.3343765.

[61] N. Kawaguchi, J. Nozaki, T. Yoshida, et al., “End-to-end walking
speed estimation method for smartphone PDR using dualcnn-lstm,”
F. Potortı̀, V. Renaudin, K. O’Keefe, et al., Eds., ser. CEUR Workshop
Proceedings, vol. 2498, CEUR-WS.org, 2019, pp. 463–470. [Online].
Available: http://ceur-ws.org/Vol-2498/short60.pdf.

[62] A. Manos, I. Klein, and T. Hazan, “Gravity direction estimation and
heading determination for pedestrian navigation,” in 2018 International

Conference on Indoor Positioning and Indoor Navigation (IPIN), 2018,
pp. 206–212.

[63] J. Nozaki, K. Hiroi, K. Kaji, et al., “Compensation scheme for pdr us-
ing sparse location and error model,” in Proceedings of the 2017 ACM

International Joint Conference on Pervasive and Ubiquitous Comput-

ing and Proceedings of the 2017 ACM International Symposium on

Wearable Computers, ser. UbiComp ’17, Maui, Hawaii: Association
for Computing Machinery, 2017, 587–596. [Online]. Available: https:
//doi.org/10.1145/3123024.3124406.

http://ceur-ws.org/Vol-2626/paper2.pdf
https://www.waves.intec.ugent.be/exposure-tool/expert-edition
https://www.waves.intec.ugent.be/exposure-tool/expert-edition
https://www.mdpi.com/2076-3417/11/4/1902
https://www.mdpi.com/2076-3417/11/4/1902
https://doi.org/10.5281/zenodo.4668618
https://doi.org/10.5281/zenodo.4668618
https://doi.org/10.5281/zenodo.3937220
https://doi.org/10.5281/zenodo.3228012
https://doi.org/10.5281/zenodo.3228012
https://doi.org/10.3390/s19040763
https://doi.org/10.3390/s19040763
https://doi.org/10.1007/978-3-030-29996-5\_43
https://doi.org/10.1007/978-3-030-29996-5\_43
https://github.com/PDR-benchmark-standardization-committee/xDR-Challenge-2020-evaluation
https://github.com/PDR-benchmark-standardization-committee/xDR-Challenge-2020-evaluation
https://doi.org/10.1145/3307334.3328667
https://doi.org/10.1145/3307334.3328667
https://doi.org/10.1145/3341162.3343765
https://doi.org/10.1145/3341162.3343765
http://ceur-ws.org/Vol-2498/short60.pdf
https://doi.org/10.1145/3123024.3124406
https://doi.org/10.1145/3123024.3124406


AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 35

[64] J.Kuang, X.Niu, and X.Chen, “Robust pedestrian dead reckoning based
on mems-imu for smartphones,” Sensors-Basel, vol. 18, p. 1391, 2018.

[65] Q. Zhang, X. Niu, H. Zhang, et al., “Algorithm improvement of the
low-end gnss/ins systems for land vehicles navigation,” Math. Probl.

Eng, p. 2013, 2013.
[66] B. Li, W. Chen, Y. Peng, et al., “Robust kalman filtering based on chi-

square increment and its application,” Remote Sens.-Basel, vol. 12,
p. 732, 2020.

[67] Shin and Eun-Hwan, “Estimation techniques for low-cost inertial
navigation,” 2005.

[68] M. A. Esfahani, H. Wang, K. Wu, et al., “A novel deep inertial
odometry network for autonomous vehicles,” IEEE T. Intell. Transp,
vol. 21, pp. 1941–1950, 2019.

[69] Y. Li, “Integration of mems sensors, wifi, and magnetic features for
indoor pedestrian navigation with consumer portable devices,” 2016.

[70] M. Stahlke, S. Kram, C. Mutschler, et al., “Nlos detection using uwb
channel impulse responses and convolutional neural networks,” in Intl.

Conf. Localization and GNSS (ICL-GNSS), 2020.
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gives classes in Industrial Engineering grades. His main research inter-
ests are indoor positioning and prevention of diseases via smartphones.
He has published several papers in international journals in all these
topics and acts as reviewer of several journals. He is part of the
Technical Program Committee of IPIN and is one of the organizers of
the Symposium “Challenges of Fingerprinting in Indoor Positioning and
Navigation” that was held in Barcelona in 2015.

Miguel Ortiz is a research engineer at GE-
OLOC Laboratory from University Gustave Eiffel
(ex-IFSTTAR). He received his M.Sc. degree
in Mechanics, automation and engineering in
2001 from Ecole Nationale Supérieure d’Arts et
Métier. He joined the lab after 6 years spent
in a company where he managed systems ar-
chitecture for automotive applications. Expert
in embedded electronic systems, his scientific
interests focus on software and hardware de-
velopments for both ITS (Intelligent Transport

Systems) and pedestrian navigation research field. Since 2017 he is
the convenor of CEN/CENELEC TC5-WG1 named ”Navigation and
positioning receivers for road applications”. He has now 12 years of
experience in the GNSS domain (research engineer). Since 2019 he is
the head deputy of GEOLOC laboratory in Nantes campus of Gustave
Eiffel University.

Ni ZHU is a research fellow at the labora-
tory GEOLOC of University Gustave Eiffel (ex-
IFSTTAR). She received her engineering de-
gree in aeronautic telecommunications from the
Ecole Nationale de l’Aviation Civile (ENAC) in
2015 and the Ph.D. degree in science of infor-
mation and communication from the University
of Lille in 2018. Her recent research is special-
ized in GNSS channel propagation modelling
in urban environments, integrity monitoring for
terrestrial applications and multi-sensory fusion

techniques for indoor/outdoor pedestrian positioning.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 37

Valerie Renaudin is a Research Director (eq.
Full Professor) at University Gustave Eiffel (ex-
IFSTTAR). She received the M.Sc. degree in
geomatics engineering from ESGT in 1999, and
the Ph.D. degree in computer, communication,
and information sciences from the EPFL in 2009.
She was a Technical Director at Swissat Com-
pany, Samstagern, Switzerland, developing real-
time geopositioning solutions based on a perma-
nent global navigation satellite system (GNSS)
network, and a Senior Research Associate with

the PLAN Group, University of Calgary, Canada. She is currently leading
the Geopositioning Laboratory (GEOLOC) at Univ. Eiffel, France where
she built a team specializing in positioning and navigation for travelers
in multimodal transport. Her research interests include outdoor/indoor
navigation using GNSS, and inertial and magnetic data, particularly for
pedestrians to improve sustainable personal mobility. She is a member
of the IEEE society since 2013 and of the steering committee of the
international conference on ”Indoor Positioning and Indoor Navigation”.
Dr. Renaudin is the recipient of the European Marie Curie Career
Integration Grant for her project smartWALK.

Ryosuke Ichikari is a senior researcher of
Human Augmentation Research Center at Na-
tional Institute of Advanced Industrial Science
and Technology (AIST) in Japan. He received
Ph.D. degree in engineering from Ritsumeikan
University in 2010. His research interests include
indoor localization, virtual/mixed reality, and as-
sistive technology for people with disability.

Ryo Shimomura is a Ph.D. course student at
University of Tsukuba in Japan. He received
master degree from University of Tsukuba in
2018.

Nozomu Ohta is a Ph.D. course student at Uni-
versity of Tsukuba in Japan. He received master
degree from University of Tsukuba in 2020.

Satsuki Nagae is a Master course student at
University of Tsukuba in Japan.

Takeshi Kurata received the B.E., M.E. and
D.E. degrees from University of Tsukuba, Japan.
Since 1996, he has been working as a re-
searcher in AIST and he is currently a deputy
director of Human Augmentation Research Cen-
ter, AIST. He is also a professor of Faculty of
Engineering, Information and Systems, Univer-
sity of Tsukuba (Cooperative Graduate School
Program). He revieved FY2016 AIST president
award (research). His other professionnal expe-
riences are as follows: (1) 2003-2005 Visiting

Scholar, HIT Lab, University of Washington, US, (2) 2011-2014 Doc-
toral co-supervisor, Joseph Fourier University, UJF-Grenoble 1, France,
(3) 2014-2017 PDR Benchmark Standardization Committee Chair, (4)
2020- ISO/IEC JTC 1/SC 24 HoD of Japan, (5) 2018-2020, group leader,
IoT R&D Center, Sumitomo Electric Industries, Ltd. His current research
topics include indoor positioning, service research, assistive technology,
IoH, and XR.

Dongyan Wei received his B.S. degree in
communication engineering from University of
Electronic Science and Technology of China
(UESTC) in 2006 and the Ph.D. degree in signal
and information processing from Beijing Uni-
versity of Post and Telecommunication (BUPT)
in 2011. He is currently a research fellow of
Aerospace Information Research (AIR) institute,
CAS (Chinese Academy of Science). He is the
author of one book, more than 30 articles, and
more than 20 inventions. His research interest

includes indoor position, multi-sensor fusion and positing in wireless
network. Dr. Wei is the TPC member of IPIN 2019 and the deputy chair
of IPIN 2022.

Xinchun Ji received his B.S. degree and M.S.
degree in Guidance Navigation and Control
(GNC) from Beijing University of Aeronautics
and Astronautics (BUAA) in 2010 and 2013. He
is a Ph.D. candidate now in electronic infor-
mation at Northwestern Polytechnical University
(NWPU). He is currently a senior engineer of
Aerospace Information Research (AIR) institute,
CAS (Chinese Academy of Science). His re-
search interest includes multi-sensor fusion and
geomagnetic matching for vehicle navigation ap-

plication.



38 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Wenchao Zhang received the B.S. degree in
surveying engineering from the China University
of Mining and Technology (CUMT), in 2013,
the M.S. degree in surveying engineering from
the Information Engineering University, in 2016
and the Ph.D. degree in signal and information
processing from University of Chinese Academy
of Sciences (UCAS) in 2020. He is currently
an assistant researcher of the Aero Information
Research (AIR) Institute, Chinese Academy of
Science (CAS). His research interests include

multi-information fusion method, integrated navigation algorithm, pedes-
trian autonomous positioning algorithm.

Sebastian Kram received his Master’s degree
in Electrical and Communication Engineering at
theFriedrich Alexander University of Erlangen-
Nuremberg (FAU), Germany, in 2017. In 2017 he
joined theLocating and Communication Systems
department at Fraunhofer IIS. Since 2020, he
simultaneouslyhas been working in the Naviga-
tion Group at the Chair for Information Tech-
nology (CommunicationElectronics) at FAU. His
research interests are tracking algorithms, ma-
chine learning, and sensor datafusion. He fo-

cuses on radio signal-based adaptive cooperative positioning in adverse
environmentsusing both model- and data-driven methods.

Maximilian Stahlke received his Master’s de-
gree in Electronic and Mechatronic Systems at
the Institute of Technology Georg Simon Ohm,
Germany, in 2020. Since 2020 he works at the
Locating and Communication Systems depart-
ment at Fraunhofer IIS in the Machine Learn-
ing & Information Fusion group. His research
interests are hybrid positioning for radio-based
localization systems with the focus on model-
and data-driven sensor fusion.

Christopher Mutschler is head of the pre-
cise positioning and analytics department at
Fraunhofer IIS in Nuremberg, Germany. Prior to
that, Christopher headed the Machine Learning
& Information Fusion group (2017-2019) and
was a chief scientist at the same department.
He simultaneously is part-time scientific staff
at the Friedrich-Alexander-University Erlangen-
Nuremberg (FAU), offering courses on machine
learning. He received both his Diploma and PhD
from Friedrich-Alexander-University Erlangen-

Nuremberg (FAU) in computer science in 2010 and 2014 respectively.
Christopher’s research is broadly located in the area of machine learning
and hybrid sensor fusion for radio-based locating systems.

Antonino Crivello is a researcher at the In-
formation Science and Technology Institute,
Consiglio Nazionale delle Ricerche (ISTI-CNR),
Pisa, Italy. He received his PhD degree in In-
formation Engineering and Science from the
University of Siena, Italy, in 2018. His research
interests include Indoor Positioning and Ambient
Assisted Living.

Paolo Barsocchi received the M.Sc. and Ph.D.
degrees in information engineering from the Uni-
versity of Pisa, Italy, in 2003 and 2007, re-
spectively. He works as a researcher with the
ISTI-CNR Institute. He has co-authored more
than 100 articles published on international jour-
nals and conference proceedings. He has been
a member of numerous Program Committees,
Program Chair of several conferences and he
is part of the Editorial Board of international
journals. His research interests include wireless

mobile systems and architectures, cyber-physical systems, indoor local-
ization, and wireless sensor networks.

Michele Girolami is researcher at the Informa-
tion Science and Technology Institute, Consiglio
Nazionale delle Ricerche (ISTI-CNR). His re-
search interested are focused on Mobile Crowd-
Sensing, Edge and Pervasive Computing and
Ambient Intelligence systems. He contributes to
EU and National research projects and he sup-
ports the organization of conferences and work-
shops. He got the PhD title from Department of
Computer Science, University of Pisa in 2015.

Filippo Palumbo received the Ph.D. in Com-
puter Science from the University of Pisa, Italy,
in 2016 and the M.Sc. Computer Science En-
gineering, with honors, from Polytechnic Univer-
sity of Bari, Italy, in 2010. He is with ISTI-CNR.
His research interests include the application
of AI to wireless sensor networks for intelligent
system design and software development in dis-
tributed systems. He has participated in several
EU and national funded research actions in the
areas of Ambient Intelligence.

Ruzihi Chen is currently a Professor and the
Director of the State Key Laboratory of Infor-
mation Engineering in surveying, mapping, and
remote sensing with Wuhan University. He was
an Endowed Chair Professor with Texas A&M
University Corpus Christi, USA, the Head and a
Professor of the Department of Navigation and
Positioning, Finnish Geodetic Institute, Finland,
and the Engineering Manager of Nokia, Finland.
He has published two books and more than 200
scientific papers. His current research interests

include indoor positioning, satellite navigation, and location-based ser-
vices.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 39

Yuan Wu received the B. S. degree in com-
puter science and technology from Southwest
University, China in 2016. He got his M.S. de-
gree in computer application technology from
Institute of Automation, Chinese Academy of
Sciences, China in 2019. He is currently pur-
suing the Ph.D. degree in Geodesy and Survey
Engineering from State Key Laboratory of Infor-
mation Engineering in Surveying, Mappping and
Remote Sensing, WuHan University, WuHan,
HuBei, China. His research interests include in-

door positioning and navigation, information fusion, and location-based
services.

Wei Li received received his both B.S and M.S
degrees in Surveying and Mapping from Bei-
jing University of Civil Engineering and Archi-
tecture in 2016. Currently he is pursuing his
Ph.D.degree in Geodesy and Survey Engineer-
ing from Wuhan University, Wuhan, China. His
research interests include indoor positioning and
navigation, and sensor fusion.

Yue Yu received the B.S. and M.S. degrees from
the Chongqing University of Posts and Telecom-
munications. He is currently pursuing the Ph.D.
degree in geodesy and survey engineering from
Wuhan University, Wuhan, Hubei, China. His
research interests include the inertial position-
ing and navigation technology, indoor position-
ing and navigation technology based on chance
signal, signal processing and fusion technology.

Shihao Xu received the B.S. degree in Survey-
ing and Mapping Engineering from China Uni-
versity of Mining and Technology, Jiangsu, China
in 2019, and he is pursuing the M.S. degree in
Geodesy and Survey Engineering from Wuhan
University, Wuhan, Hubei, China. His research
interests include the development of location-
based services, indoor positioning and naviga-
tion technology, and information fusion.

Lixiong Huang received the B.S. degree in
Surveying and Mapping Engineering from China
University of Mining and Technology, Jiangsu,
China in 2019, and he is pursuing the M.S. de-
gree in Geodesy and Survey Engineering from
Wuhan University, Wuhan, Hubei, China. His
research interests include the development of
location-based services, indoor positioning and
navigation technology, and information fusion.

Tao Liu received the B.S. degree in Geographic
Information System from Liaoning Technical Uni-
versity, Fuxin, China, in 2015, and M.S. degree
in Surveying and Mapping from Liaoning Tech-
nical University, Fuxin, China, in 2018. He is
currently pursuing the Ph.D. degree in GNSS
Research Center, Wuhan University, Wuhan,
China. His research interests focus on inertial
navigation, multi-sensor fusion algorithm, IMU-
based body sensor network, pedestrian naviga-
tion and indoor positioning.

Jian Kuang received the B.Eng. degree and
Ph.D. degree in Geodesy and Survey Engineer-
ing from Wuhan University, Wuhan, China, in
2013 and 2019, respectively. He is currently a
Postdoctoral Fellow with the GNSS Research
Center in Wuhan University, Wuhan, China. His
research interests focus on inertial navigation,
pedestrian navigation and indoor positioning.

Xiaoji Niu received the B.Eng. degree (with hon-
ors) in Mechanical and Electrical Engineering
and WHU the Ph.D. from Tsinghua University,
Beijing, China, in 1997 and 2002, respectively.
From 2003 to 2007, he was a Post-Doctoral
Fellow with the Mobile Multi Sensor Systems
(MMSS) Research Group, Department of Geo-
matics Engineering, and University of Calgary.
From 2007 to 2009, he was a Senior Scientist
with SiRF Technology, Inc. At present, he is a
Professor of the GNSS Research Center and the

Collaborative Innovation Center of Geospatial Technology in Wuhan Uni-
versity, Wuhan, China. His research interests focus on INS, GNSS/INS
integration for land vehicle navigation and pedestrian navigation.

Takuto Yoshida received his B.E. degrees in
engineering from Nagoya University, Japan in
2020. From 2020, he has been a master stu-
dent in Graduate School of Engineering, Nagoya
University. His research interests include indoor
positioning, human activity recognition, and ma-
chine intelligence.

Yoshiteru Nagata received his B.E. degrees in
engineering from Nagoya University, Japan in
2021. From 2021, he has been a master stu-
dent in Graduate School of Engineering, Nagoya
University. He has been also Rinnai Scholar-
ship Foundation Scholarship Student from 2021.
His research interests include indoor positioning,
person-flow estimation, and autonomous driv-
ing.



40 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Yuto Fukushima received his B.E. degrees in
engineering from Nagoya University, Japan in
2021. From 2021, he has been a master student
in Graduate School of Engineering, Nagoya Uni-
versity. His research interests are in the fields
of autonomous mobile robots and human-robot
collaboration.

Nobuya Fukatani received his B.E. degrees in
engineering from Nagoya University, Japan in
2020. From 2020, he has been a master stu-
dent in Graduate School of Engineering, Nagoya
University. His research interests include hu-
man activity recognition and power consumption
analysis.

Nozomi Hayashida received his B.E. degrees
in Engineering from Osaka Prefecture Univer-
sity, Japan in 2020. From 2020, he has been a
master student in Graduate School of Engineer-
ing, Nagoya University. His research interests
include AR/MR, human computer interaction.

Yusuke Asai received his B.E. degrees in engi-
neering from Nagoya University, Japan in 2019.
He has been a master student in Graduate
School of Engineering, Nagoya University from
2019. His research mainly focuses on collabora-
tive autonomous mobile robot in an indoor en-
vironment and infrastructual sensor cooperation
with mobile robots.

Kenta Urano received his B.E., M.E. and Ph.D.
degrees in engineering from Nagoya University,
Japan in 2016, 2018, and 2021, respectively.
From 2021, he is an assistant professor in Grad-
uate School of Engineering, Nagoya University.
His research interests include location based
system, human activity recognition, and biosig-
nal entertainment computing.

Wenfei Ge was born in Henan, China, in 1996.
She received her bachelor’s degree in surveying
and mapping engineering from Wuhan Univer-
sity in 2018 and has been studying for a mas-
ter’s degree at the GNSS Research Center of
Wuhan University, China since 2018. Her re-
search focuses on aided inertial navigation and
multisource sensor integrated navigation.

NienTing Lee received the B.S. degree in
computer science&information engineering from
Chung Hua University, Hsinchu, Taiwan in 2020.
He is currently pursuing the M.S. degree in
electrical engineering at Yuan Ze University,
Taoyuan, Taiwan. From the fall of 2020,he has
been a graduate student, Wireless Mobile Com-
puting Lab, Yuan Ze University, Taoyuan, Tai-
wan. His research interest includes AI Technol-
ogy and Data analysis.

ShihHau Fang (Senior Member, IEEE) received
the B.S. degree from National Chiao Tung Uni-
versity, in 1999, and the M.S. and Ph.D. degrees
from National Taiwan University, Taiwan, in 2001
and 2009, respectively, all in communica-tion
engineering. From 2001 to 2007, he was a Soft-
ware Architect with Chung-Hwa Telecom Ltd. He
joined Yuan Ze University (YZU), in 2009. He is
currently a Full Professor with the Department
of Electrical Engineering, YZU, and also with the
MOST Joint Research Center for AI Technology

and All Vista Healthcare, Taiwan. He is also a Technical Advisor to
HyXen and PTCom Technology Company Ltd. His research interests
include artificial intelligence, mobile computing, machine learning, and
signal processing. He has received several awards for his research
work, including the Young Scholar Research Award from YZU, in 2012,
the Project for Excellent Junior Research Investigators from MOST,
in 2013, the Outstanding Young Electrical Engineer Award from the
Chinese Institute of Electrical Engineering, in 2017, the Outstanding
Research Award from YZU, in 2018, and the Best Synergy Award from
the Far Eastern Group, in 2018. His team received the Third Place of
IEEE Multimedia Big Data (BigMM) HTC Challenge in 2016 and the
Third Place of Indoor Positioning and Indoor Navigation (IPIN) in 2017.
He serves as an YZU President’s Special Assistant. He was also an
Associate Editor of IEICE Transactions on Information and Systems.

You-Cheng Jie received the B.S.degree in
Communications Engineering from Yuan Ze Uni-
versity, Taoyuan, Taiwan in 2020.He is currently
pursuing the M.S. degree in electrical engineer-
ing at Yuan Ze University, Taoyuan, Taiwan.
From the fall of 2020,he has been a graduate
student,Wireless Mobile Computing Lab, Yuan
Ze University, Taoyuan, Taiwan.His research in
Millimeter wave radar.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 41

Shawn-Rong Young is currently pursing the
B.S. degree in electrical engineering at Yuan Ze
University, Taoyuan, Taiwan.

Ying-Ren Chien (Senior Member, IEEE) re-
ceived the B.S. degree in electronic engineering
from the National Yunlin University of Science
and Technology, Douliu, Taiwan, in 1999, and
the M.S. degree in electrical engineering and
the Ph.D. degree in communication engineering
from National Taiwan University, Taipei, Taiwan,
in 2001 and 2009, respectively.
Since 2012, he has been with the Department of
Electrical Engineering, National Ilan University,
Yilan, Taiwan, where he is currently a Full Pro-

fessor.His research interests include adaptive signal processing theory,
machine learning, the Internet of Things, and interference cancellation.

Chih-Chieh Yu He is currently pursuing M.S.
degree in the Department of Electrical Engineer-
ing, National Ilan University, Yilan, Taiwan, since
2018.
He plan to study graduate school in the fall of
2021. From 2020,he has been a pre-graduate
student with the Department of Electrical Engi-
neering, National Ilan University. His research
interests include indoor positioning, machine
learning, and signal processing.

Chengqi Ma received the B.S. degree in Com-
munication Engineering from Harbin Institute of
Technology (HIT), Harbin, China, in 2012 and
the M.S. degree in Wireless Communication
from Lund University, Lund, Sweden, in 2015.
He is currently pursuing the Ph.D. degree in
Electrical Engineering Department at University
College London (UCL), London, United King-
dom.His research interest includes the devel-
opment of Indoor Positioning System, Human
activity Recognition and Internet of Things.

Bang Wu received the B.S. (in 2014) and M.S.
(in 2016) degrees in the School of Geodesy
and Geomatics from Wuhan University (WHU),
Wuhan, China. He is currently pursuing the
Ph.D. degree in the School of Electronic Engi-
neering and Computer Science at Queen Mary,
University of London (QMUL), London, United
Kingdom.His research interests include Indoor
Positioning and Indoor Navigation, Human activ-
ity Recognition, Internet of Things and Artificial
Intelligence.

Wei Zhang received the Ph.D. degree from the
School of Geodesy and Geomatics, Wuhan Uni-
versity, Wuhan, China, in 2018. He is currently a
Post-Doctoral with the Department of Research
Institute for Smart Cities, Shenzhen University,
Shenzhen, China. His current research focuses
on the indoor positioning and indoor navigation.

Yankun Wang received his Ph.D. in cartography
from the Wuhan University of China in 2018.
He joined the Shenzhen University in 2018 and
currently is a postdoc at the research institute
for smart cities, school of architecture and urban
planning.His main research interests are Spatial
Modeling, Indoor Positioning and Spatial Cogni-
tion.

Yonglei Fan Fan received the B.S. degree in
South China Normal University in 2017 and
the M.S. degree in University of Chinese Aca-
demic and Sciences, Beijing, in 2020. He is cur-
rently pursuing the Ph.D. degree in the School
of Electric Engineering and Computer Science
at QMUL, London, UK. His research inter-
ests include IoT, positioning estimation, Geo-
information data mining and other Location-
related analysis.

Stefan Poslad received the Ph.D. from New-
castle University. He is currently an Associate
Professor School of Electronic Engineering and
Computer Science at Queen Mary, University of
London (QMUL), London, United Kingdom. He
heads the IoT Lab and his research interests
are Indoor Positioning and Indoor Navigation,
Human activity recognition, Internet of Things,
ubiquitous computing, semantic Web, distributed
system management and Artificial Intelligence.

David R. Selviah received the PhD in photonic
engineering from Trinity College, Cambridge
University, Cambridge. UK. He is currently a
Reader in Optical Devices, Interconnects, Al-
gorithms and Systems in the EEE Department
at UCLHis current research interests include
machine learning, feature recognition, 3D point
cloud processing, indoor positioning and naviga-
tion, quantum dot material characterization.



42 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Weixi Wang received the Ph.D. degree in
Geodesy and Survey Engineering from the
Liaoning Technical University, Liaoning, China,
in 2007. He completed post-doctoral fellowship
in School of Resource and Environmental Sci-
ences, Wuhan University, China, in 2013. He is
the author or co-author of over 30 refereed jour-
nal and conference papers, and 1 book. He is
currently an Associate Professor with the School
of Architecture and Urban Planning, Shenzhen
University, Shenzhen, China. He is the Deputy

Head of Department of Urban Spatial Information Engineering, School
of Architecture and Urban Planning. His current research interests
include real time positioning and navigation, target feature extraction and
matching and 3D model reconstruction.

Hong Yuan received the Ph.D. degree from the
Shanxi Observatory of the Chinese Academy
of Sciences, in 1995. He has been engaged
in research on ionospheric radio wave propa-
gation, GPS/Beidou satellite navigation system
construction, manned space applications, iono-
spheric physics, and ionospheric detection, etc.
He has hosted or participated in 13 national
and provincial level projects, 8 provincial and
ministerial science and technology awards, more
than 30 invention patents, and has published

more than 60 papers. He is currently a research fellow of Aerospace
Information Research (AIR) institute, Chinese Academy of Science. And
he currently engaged in software and hardware design and algorithm
research related to satellite navigation, multi-source fusion navigation,
ionospheric detection.

Yoshitomo Yonamoto received the B.E. de-
grees from Keio University in 2020, where he is
currently pursuing the M.S. degree in computer
science. His research interests include computer
vision and indoor localization.

Masahiro Yamaguchi received his B.S., M.S.,
and Ph.D. degree in engineering from Keio Uni-
versity, Japan, in 2016, 2017, and 2021, re-
spectively. He was a university project assistant
at Graz University of Technology from 2018 to
2019. Since 2021, he has been working at NEC.
His research interests include SLAM, 3D recon-
struction, and computer vision.

Tomoya Kaichi received the B.E. and
M.Sc.Eng. degrees in information and computer
science from Keio University, Japan, in 2017
and 2018, respectively. He is currently pursuing
the Ph.D. degree in science and technology
with Keio University, Japan. His main research
interests include human motion estimation,
optical-inertial sensor fusion, and hyperspectral
analysis.

Baoding Zhou received the Ph.D. degree
in photogrammetry and remote sensing from
Wuhan University, Wuhan, China, in 2015. He is
currently an assistant professor with the College
of Civil and Transportation Engineering, Shen-
zhen University, Shenzhen, China. His research
interests include indoor localization and map-
ping, mobile computing, and intelligent trans-
portation

Xu Liu received the B.E. degree in geomatics
engineering from Chengdu University of Tech-
nology, China, and the M.E. degree in geodesy
and geomatics engineering from Kunming Uni-
versity of Science and Technology, China, in
2016 and 2019, respectively. He is currently pur-
suing the Ph.D. degree in the School of Civil and
Transportation Engineering at Shenzhen Univer-
sity. His main research interests include Indoor
Localization and Navigation, Internet of Things.

Zhining Gu received the B.S. degree in geo-
graphic information science from Harbin Normal
University, China, in 2019. He is currently pursu-
ing the M.E. degree at Shenzhen University. His
main research interests include the design and
implementation of indoor tracking and navigation
systems, deep learning algorithm design, and
intelligent transportation

Chengjing Yang received the B.S. degree in
traffic transportation from Dalian Maritime Uni-
versity, China, in 2019. He is currently pursuing
the M.E. degree at Shenzhen University. His
main research interests include the indoor po-
sitioning and intelligent transportation.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 43

Zhiqian Wu received the B.S. degree in traffic
transportation from Dalian Maritime University,
China, in 2020. He is pursuing the M.E. degree
at Shenzhen University. His main research inter-
ests include Pedestrian indoor positioning and
intelligent transportation.

Doudou Xie received the B.S. degree in Traffic
engineering form Shandong Jiao tong University,
China, in 2019. He is currently pursuing the
M.E. degree at Shenzhen University. His main
research interests include the design and imple-
mentation of indoor tracking and navigation sys-
tems, and robot mapping and self-localization
and intelligent transportatio

Can Huang is currently pursuing the B.E. de-
gree at Shenzhen University. His main research
interests include indoor localization and intelli-
gent transportation.

Lingxiang Zheng received the Ph.D. degree
in artificial intelligence from Xiamen University,
China. He is currently a Professor at the School
of Informatics, Xiamen University. His research
interests include indoor positioning, mobile com-
puting, and smart devices.

Ao Peng (Member, IEEE) received the M.Sc.
and Ph.D. degrees in communication and infor-
mation systems from Xiamen University, Fujian,
China, in 2011 and 2014, respectively. In 2015,
he joined the School of Informatics, Xiamen
University, where he is currently an Assistant
Professor. His research interests include satel-
lite navigation and multisource positioning and
navigation.

Ge Jin received the B.S. degree in communica-
tion engineering from Hohai University (HHU),
Changzhou, China, in 2015. He is currently pur-
suing the M.S. degree in electronic and com-
munication engineering in Xiamen University
(XMU), Xiamen, China. His research interest
includes indoor positioning systems.

Qu Wang received the B.S. degree from the
School of Software Engineering, Beijing Univer-
sity of Posts and Telecommunication, China, in
2013, the M.S. degree from the University of
Chinese Academy of Sciences, Beijing, China,
in 2017. QU WANG is currently pursuing the
Ph.D. degree with the School of Information and
Communication Engineering, Beijing University
of Posts and Telecommunications, China. His
current main interests include location-based
services, pervasive computing, computer vision

and machine learning.

Haiyong Luo received the B.S. degree from the
Department of Electronics and Information En-
gineering, Huazhong University of Science and
Technology, Wuhan, China, in 1989, the M.S.
degree from the School of Information and Com-
munication Engineering, Beijing University of
Posts and Telecommunication, China, in 2002,
and the Ph.D. degree in computer science from
the University of Chines Academy of Sciences,
Beijing, China, in 2008. He is currently an As-
sociate Professor with the Institute of Computer

Technology, Chinese Academy of Science, China. His main research
interests are location-based services, pervasive computing, mobile com-
puting, and Internet of Things.

Hao Xiong received the B.S. degree in the
School of Software Engineering, Beijing Univer-
sity of Posts and Telecommunications, Beijing,
China, in 2019. HAO XIONG is currently pursu-
ing the M.S. degree with the School of Software
Engineering, Beijing University of Posts and
Telecommunications, Beijing, China. His current
main interests include Location-based services,
pervasive computing and machine learning.

Lingfeng Bao received the B.S degree from the
School of Electronic Information Wuhan Univer-
sity, Hubei China. He is currently a graduate stu-
dent in Research Center for Ubiquitous Comput-
ing Systems, Institute of Computing Technology,
Chinese Academy of Science. His research in-
terests are embedded system and GNSS aided
inertial navigation system.



44 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Pushuo Zhang received the B.S. degree from
the School of Geological Engineering, Chang’an
University, China, in 2019. Pushuo Zhang is cur-
rently pursuing the M.S. degree with the School
of Software Engineering, Beijing University of
Posts and Telecommunications, China. His cur-
rent main interests include location-based ser-
vices, pervasive computing, inertial navigation
and machine learning.

Fang Zhao received the B.S. degree from the
School of Computer Science and Technology,
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 1990, the M.S. and
Ph.D. degrees in computer science and tech-
nology from the Beijing University of Posts and
Telecommunication, Beijing, China, in 2004 and
2009, respectively. She is currently a Professor
with the School of Software Engineering, Beijing
University of Posts and Telecommunication. Her
research interests include mobile computing,

location-based services, and computer networks

Chia-An Yu is currently pursing the B.S. de-
gree in electrical engineering at Yuan Ze Univer-
sity, Taoyuan, Taiwan.He plan to study graduate
school in the fall of 2021.From 2020,he has been
a pre-graduate student, Wireless Mobile Com-
puting Lab, Yuan Ze University, Taoyuan, Tai-
wan. His research interest include Sensor data
calculation, and Transformer model in speech
enhancement.

Chun-Hao Hung received the B.S. degree in
computer science&information engineering from
Chung Hua University, Hsinchu, Taiwan in 2020.
He is currently pursuing the M.S. degree in
electrical engineering at Yuan Ze University,
Taoyuan, Taiwan.From the fall of 2020,he has
been a graduate student, Wireless Mobile Com-
puting Lab, Yuan Ze University, Taoyuan, Tai-
wan. His research interest include Sensor data
calculation, and Database analysis.

Leonid Antsfeld received his M.Sc. in Applied
Mathematics and Computer Science from Tech-
nion, Israel Institute of Technology in 2005 and
his Ph.D. in Computer Science from University of
New South Wales, Sydney, Australia in 2014.He
has an extensive industrial experience solving
real-world complex problems by applying his
research at Rafael, Intel, NICTA (Australia’s In-
formation and Communications Technology Re-
search Centre of Excellence) and Xerox Innova-
tion Group. He is an author of several scientific

papers and patents.Since 2017, he is a Senior Researcher in Naver
Labs Europe, Grenoble, the biggest industrial research lab in AI in
France. His current research interests are around sensors fusion for
indoor positioning and navigation.

Boris Chidlovskii received the M.S. in Applied
Mathematics and Ph.D. degrees in Computer
Science from Kiev State University, Ukraine, in
1984 and 1990, respectively. He was an Asso-
ciate Professor at Kiev State University, Ukraine,
an Invited Professor at Salerno University, Italy
before joining Xerox Research Center Europe,
France in 1996. Since 2017, he is a Princi-
pal Scientist at Naver Labs Europe, Grenoble,
France. He is the author or co-author of more
than 50 patents and 100 scientific papers in in-

ternational journals and conference proceedings. His research interests
include machine learning, data mining, recommendation systems, time-
spatial modelling, intelligent transportation systems, deep learning and
computer vision. Member of IEEE since 1997.

Haitao Jiang is a Ph.D candiadate at Beihang
University. His current research mainly involves
multi-source fusion navigation, which includes
GNSS, inertial, and visual integrated navigation.

Ming Xia is now working as a postdoctoral
at Beihang University. His research interests
include motion recognition, pedestrian inertial
positioning, wearable sensor-based positioning,
and their applications in location-based service
applications.

Dayu Yan is currently pursuing the Ph.D. degree
with the college of Electrical Engineering in Bei-
hang University. His research interests include
design and implementation of indoor tracking
and integrated navigation system.

Yuhang Li is a graduate of Beihang University
and he is currently studying for a master’s de-
gree in the School of Electronic Information at
Beihang University, where he is now studying
multi-source fusion navigation, which includes
laser slam and vision slam.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 45

Yitong Dong is a master student at Beihang
University. Her current research mainly involves
the integrated navigation of Global Navigation
Satellite System (GNSS), inertial navigation, and
vision slam.

Ivo Silva is a researcher at the Algoritmi Re-
search Centre and an Invited Assistant at Uni-
versity of Minho, Portugal. He obtained the MsC
degree in Telecommunications and Informat-
ics Engineering in 2016 from the University of
Minho. Currently, he is working his PhD thesis
with a focus on indoor positioning of industrial
vehicles based on Wi-Fi. His research interests
are in indoor positioning and navigation, mobile
computing and software engineering.

Cristiano Pendão received the MSc in Telecom-
munications and Informatics Engineering in
2012 from the University of Minho, Portugal and
the PhD degree in the fields of Telecommuni-
cations/Computer Science Engineering from the
Universities of Minho, Aveiro and Porto in 2019.
He is a Professor at the School of Engineering,
University of Minho, and a researcher at the
Algoritmi Research Centre. His research inter-
ests are in positioning and navigation systems,
computer vision, mobile computing and app. de-

velopment for iOS and Android.

Filipe Meneses is an Invited Assistant Profes-
sor at the University of Minho in Portugal, a
researcher at Algoritmi Research Center and the
Urban and Mobile Computing unit coordinator
at CCG – Center for Computer Graphics.He
received the ”Licenciatura” degree (5 years) in
1998 and the MSc degree in 2001, both in
Information Systems and the PhD degree in
Information Systems Technologies (Computing
and Communications Systems) in 2008, from
the University of Minho - Portugal. His research

interests include indoor positioning and indoor navigation, context-aware
systems, urban and mobile computing, and human space movement
analysis. His research activities have been taking place within the Urban
Computing Lab research sub-group. He has participated in several
research projects funded by national programs, European programs
(FP7 and H2020) and directly contracted by the industry. He has
published his research results in various conferences and journal in the
area. He served as a member of the Technical Program Committee of
several international conferences and journals and co-organized several
international conferences locally.

Maria João Nicolau is an Assistant Professor at
the Department of Information Systems, School
of Engineering, University of Minho, Portugal
where she actually develops teaching and re-
search activities in the field of Communication
Networks and Protocols. As a researcher she is
within Ubicomp@UMinho research group at AL-
GORITMI Research Centre, University of Minho,
Portugal. Maria Joao Nicolau was graduated in
Systems and Informatics Engineering by Univer-
sity of Minho, Portugal, in 1992, and obtained a

MSc Degree (1995) and a PhD Degree (2005), in Informatics (Computer
Communications) in the same University. She has been with the Univer-
sity of Minho as a lecturing and research staff member, since 1994.
During her teaching career, she has lectured in Operating Systems,
Computer Architectures and Computer Networks and Data Communi-
cation Systems. Regarding the research activity, Maria João Nicolau
has participated in several research projects, supervised almost forty
pos-graduated students, and co-authored more than fifty peer-reviewed
papers. Current research interests concern network technologies and
protocols, vehicular networks and indoor positioning.

António D. Costa PhD, is an Assistant Profes-
sor at Department of Informatics, University of
Minho, Portugal, where he develops teaching
and research activities in the fields of Com-
puter Networks and Computer Communications
since 1992. As a researcher, he currently inte-
grates the Computer Communications and Net-
works (CCN) research group, at Centro Algo-
ritmi, School of Engineering, University of Minho.
He graduated in Systems and Informatics En-
gineering in 1992, obtained an MSc Degree in

Informatics in 1998 and a PhD Degree in Computer Science in 2006
at the same university. He participated in several research projects,
supervised MSc and PhD students, and co-authored more than sixty
peer-reviewed papers. His current research interests are in Indoor Po-
sitioning, Vehicular Networks, mobile AdHoc networks, disruptive Delay
Tolerant Networks, Named Data Networks, Internet of Things and future
Internet.

Adriano Moreira is an Associate Professor,
with Habilitation, at the School of Engineer-
ing, University of Minho, and a researcher at
the Algoritmi Research Centre. He received the
degree in Electronics and Telecommunications
Engineering and the Ph.D. in Electrical Engi-
neering, respectively in 1989 and 1997, from
the University of Aveiro - Portugal. He is the
Director of the MAP-tele doctoral program in
Telecommunications. His research interests are
in urban computing, human mobility analysis, in-

door positioning and simulation of wireless and mobile networks in urban
contexts. His research activities have been focusing on the creation of
technologies for smart places. In the past few years he participated in
many research projects funded by national and European programs.
He is the author of more than 100 scientific publications in conferences
and journals, and the author of one patent in the area of computational
geometry. He has been a voting member of the IEEE 802.11 working
group where he participated in the specification of the infrared physical
layer. With his colleagues, won the 1st prize on the off-site Track of the
EvAAL-ETRI Indoor Localization Competition (IPIN 2015 and 2017). He
is chairing the Steering Committee of the International Conference on
Indoor Positioning and Indoor Navigation, and is a member of the ICL-
GNSS conference Steering Committee.



46 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Cedric De Cock received the M.S. in Electronics
and ICT Engineering Technology from Ghent
University in 2020. The same year, he became
a member of the imec-WAVES Group, Depart-
ment of Information Technology (INTEC), Ghent
University. His research interests include IMU-
enabled indoor positioning and signal process-
ing.

David Plets (Member, IEEE) has been a mem-
ber of the imec-WAVES Group, Department of
Information Technology (INTEC), Ghent Univer-
sity, since 2006, where he has also been an
Assistant Professor since 2016. His current re-
search interests include localization techniques
and the IoT, for both industry- and health-related
applications. He is also involved in the optimiza-
tion of wireless communication and broadcast
networks, with a focus on coverage, exposure,
and interference.

Miroslav Opiela was born in Prešov, Slovakia,
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