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ABSTRACT IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research
Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time
Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment,
made of two buildings close together for a total usable area of 1000 m2 outdoors and and 6000 m2 indoors
over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL
framework, have aimed at comparing the accuracy performance of personal positioning systems in fair
and realistic conditions: past editions of the competition were carried in big conference settings, university
campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system
under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given
points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world
settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and
reproducible comparison of the most recent positioning and tracking algorithms in the same environment as
the on-site Tracks.
INDEX TERMS Indoor Localisation, Indoor Navigation, Competition, Benchmarking, Smartphone-based
Positioning, Foot-mounted Pedestrian Dead Reckoning, Wi-Fi Fingerprinting, Magnetic Field, Camera-
based Positioning, Inertial-based Positioning, Sensor Fusion, Kalman Filter, Particle Filter
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I. INTRODUCTION

Indoor positioning and navigation systems in the past decade
have prompted considerable research activity both from
academy and industry, due to the lack of readily avail-
able solutions able to provide indoor localisation informa-
tion to location-based services. Despite the huge amount of
technologies and techniques proposed and the many ones
implemented, existing systems are not efficient or general
enough to power off-the-shelf services as it happens with
outdoor localisation. While systems for indoor localisation
are commercially available, they are either too expensive or
too tailored to a specific purpose or environment to be of
general use, so their adoption is limited.

The main obstacle to widespread adoption of ubiquitous
and seamless positioning and navigation applications is tech-
nological: not only indoor environments are diverse, but
available technologies are complex and require expensive
maintenance even for the most common environments. How-
ever, great progresses are being made from a technological
point of view, so the next obstacles are starting to be in view,
and these include privacy and standardisation issues.

In 2016 the first official standard was published on test-
ing and evaluation of localisation systems: ISO/IEC-18305
[1] defines a common language and describes procedures
and metrics for describing the performance of localisation
systems from many points of view in a variety of indoor
environments. This is a fundamental step towards widespread
adoption, as the definition of common evaluation criteria is
expected to add transparency to the market and eventually
increase stakeholders’ trust. ISO/IEC-18305 is but the first
attempt at defining Test & Evaluation procedures, and its
general applicability has been questioned [2]. Other efforts
in the same direction have taken a hands-on approach, by
involving system designers in annual competitions, such as
the series of EvAAL, ISPN and IPIN competitions. But why
is this necessary at all? In other words, why is it so difficult
to compare indoor localisation systems?

Generally speaking, indoor localisation systems use a wide
variety of sensors providing raw data. Data fusion techniques
are used to refine the raw data, perform data analysis and gen-
erate position estimates. Such systems are intrinsically com-
plex and have complex interactions with the environment,
so their performance in the real world is subject to many
different and possibly unexpected effects that cannot easily
be reproduced in laboratory settings, where each technique is
deeply analyzed, optimised and tuned. Another consequence
of this complexity is that a simple comparison between two
systems is not straightforward, as the evaluation involves
many parameters depending on the specific use case. Offline
comparison of localisation algorithms is possible through the
use of open data sets [3], [4] that allow developers to work
with the same data, gathered using the same technologies. As
far as online comparison is concerned, the EvAAL evaluation
framework [5] provides a set of procedures useful for on-site
test and evaluation.

The EvAAL framework has been used for the EvAAL
competition series (2011–2013) and has been promoted by
the International Conference on Indoor Positioning and In-
door Navigation (IPIN) as the basis of the IPIN Competition
series (2014–2019). The IPIN conference is open to experts
and stakeholders in the indoor localisation field; every year
it involves around 300 attendees. This paper describes the
2019 edition of the IPIN Competition held in Pisa, Italy, from
28 to 29 September 2019. Besides describing organisational
aspects and technical choices taken by the organisers, the
core part of the paper is represented by a description of the
systems proposed by competitors in four different Tracks: on-
site smartphone, on-site video, off-site smartphone and off-
site foot-mounted IMU (Inertial Measurement Unit). Details
about each Track are given in section III.

This work provides the reader with a unique overview on
the directions taken by the research community, what are the
practically used technologies and what is the performance
that can be expected by real systems in a real-world scenario.
It describes state-of-the-art systems tested side by side in a
realistic environment on a level playing field. The two on-site
Tracks put system designers and developers in a challenging
situation with little time to tune their systems to the environ-
ment. The two off-site Tracks gave designers the opportunity
to test in detail their algorithms in a completely reproducible
synthetic environment. All were compared according to the
EvAAL framework, in the same physical setting.

The paper is structured as follows. Section II gives an
overview on other indoor positioning and localisation com-
petitions. Section III describes the competition setting, mea-
surement procedure and overall results. Sections IV–VII are
devoted to the four Tracks with an overview and detailed de-
scription of competing systems. Sections on Lessons Learned
and Conclusions close the paper.

II. COMPETITIONS ABOUT POSITIONING,
LOCALISATION AND NAVIGATION
The first international indoor localisation competition series
was EvAAL, in three editions from 2011 to 2013 [6]. EvAAL
was set in a living lab, a small real house instrumented with
all sort of sensors. An actor was wearing the competition
system and walked for a total of about 50 m on a precisely-
defined path where individual footsteps were marked on the
floor and a chime ensured that the actor performed one
step per second. Competitors had one hour to instrument
the room with their equipment before the evaluation took
place. Scoring was based on point accuracy (third quartile
of the error estimated twice per second) and other hard
and soft metrics such as installation time, system reliability,
adherence to open standards and user acceptance.

In 2014, the international conference on Information Pro-
cessing in Sensor Networks (IPSN) hosted the first of five
editions of the Microsoft indoor localisation competition [7].
The competition offered a measurement environment similar
to a laboratory setting, thus allowing for a wide participation
of prototypal systems. In particular, competitors had to posi-

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3037221, IEEE Access

F. Potortì et al.: The IPIN 2019 competition

tion their system on a series of markers, and they were asked
to estimate the coordinates of these markers. The indoor
environment was not set to reproduce a specific use case,
and from 2014 until 2018 the settings varied between few
rooms and 600 m2. Scoring was based on the mean accuracy.
Recently, the competition considered also a 3D Track. The
main competition strength was inclusiveness: the setting was
similar to a lab, so many teams were able to participate,
usually exceeding 20 participants. The main weakness was
that the environment was not representative of a real use case,
being based on a sequence of static localisation accuracy
measurements.

The first of six editions of the IPIN Competition series
was held at the IPIN 2014 Conference, located in Busan,
South Korea. This competition strived to keep as much as
possible of the EvAAL rigour and realism, while extending
it to a wider environment. The result was the definition of the
EvAAL framework [5], on which all subsequent IPIN Com-
petitions would be based [8]. Competitors were not allowed
to install their own equipment in the environment, which was
a large public area. Similarly to the Microsoft competition,
the organisers set a number of key points along a path and
the scoring relied only on point accuracy. The competitors’
systems worked in real-time, but measurements were done
on an actor wearing the competing system who walked at
a natural pace on a path about 600 m long including stairs,
during which the competing system was expected to log two
position estimates per second. All in all, this was a very
challenging test for systems that were often at the prototypal
stage and whose designers only had the previous day to
survey the competition area, without advance knowledge of
the competition path. In addition, systems were expected
to run on a commercial smartphone, without any external
sensors. Since no instrumentation on the competition area
was allowed, only the already deployed Wi-Fi access points
and the map knowledge could be exploited by competitors in
addition to the built-in smartphone sensors.

More in detail, in 2014 the area was a multi-floor building
used for conferences and big events, and the path spanned
three floors connected by staircases. Reference points were
marked on the floor with adhesive sheets and were used
as ground truth. Competitors gave their phone to an actor
who had to follow a predefined path with the only constraint
of naturally walking and passing over all key points in the
right order. In the IPIN 2015 edition, held in Banff (CA),
the competition consisted of two on-site Tracks (smartphone-
only and foot-mounted IMU) and one off-site Track (Wi-Fi
fingerprinting in large environments). The idea of the off-site
Track was about improving the development of algorithmic
techniques: competitors were provided with some signal
traces gathered into three building at a university campus and
they were asked to estimate the path which had generated
those traces. Similar mixes of on-site and off-site Tracks were
proposed during the IPIN Competition editions 2016, 2017,
and 2018 [9]. In 2018 and 2019, on-site and off-site tracks
have taken place in the same indoor environment.

In 2018 the PerfLoc project launched a one-time compe-
tition, gathering smartphone system competitors in a chal-
lenging environment [10]. The main goal of PerfLoc is to
facilitate the development of the best possible smartphone
indoor localisation apps. In a way analogous to the UIJIn-
doorLoc data set, PerfLoc publishes an extensive repository
of annotated smartphone sensor and RF signal strength data
to enable researchers to test smartphone indoor localisation
algorithms [3], [4]. Moreover, they provide a web interface
for competitors to obtain a score for their estimates immedi-
ately. Measurements conform to ISO/IEC 18305 [1], [2].

In 2019 the IEEE Communication Theory Workshop1

organised the Positioning Algorithm Competition, an offline
challenge whose purpose was to design and train a posi-
tioning algorithm based on estimated channel frequency re-
sponses between the user and an antenna array. Competitors
had to develop an algorithm using a data set created with a
channel sounder. All algorithms would be tested on the day of
the competition on unseen test data comprising only channel
responses, without the ground truth.

The sheer existence of these initiatives demonstrates the
presence of widespread interest in evaluation of indoor lo-
calisation systems among researchers, both in academy and
industry. The following sections describe the IPIN 2019
Competition, with both on-site (real-time) and off-site (of-
fline) Tracks.

III. EVALUATING INDOOR POSITIONING SYSTEMS IN A
RESEARCH CAMPUS
The IPIN 2019 Competition was held in a research campus,
namely the Pisa research Area of the CNR (Italy’s National
Research Council). It consisted of four Tracks, each managed
by Track chairs under the supervision of the competition
chairs Francesco Potortì and Sangjoon Park.

Institutions involved were the Institute of Information
Science and Technologies (ISTI) of the National Research
Council (CNR, IT), the Institute of New Imaging Tech-
nologies (INIT) from the University of Jaume I (ES), the
GEOLOC laboratory of the French Institute of Science and
Technology for Transport Development and Networks (IFF-
STAR, FR), and the Electronics and Telecommunications
Research Institute (ETRI, KR).

A. PREPARING THE COMPETITION TRACKS

Under the umbrella of the EvAAL framework, five Tracks
provided an exciting variety of situations, all of them cen-
tered on personal localisation. The first four Tracks were all
set in the same area, two on-site and two off-site ones, which
makes for potentially interesting comparisons, especially as
some teams participated in more than one Track, some of
them using the same methods in on-site and off-site Tracks.

On-site Tracks are the most challenging, as they require
competitors to prepare a working system at their premises,
integrate it with the measuring app used both for gathering

1https://ctw2019.ieee-ctw.org/authors/
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the estimates and marking the passage on the key point
markers, spend a single day in the competition area for
surveying the (large) area, take measurements and test the
reliability of their system, and finally undergo two trials, of
which the best score is taken. The trial itself lasts for about
fifteen minutes during which an actor walks while carrying
the competing system; the system under measure must not
crash, and no further tuning is possible. No wonder that
few competitors participate each year to such an exciting yet
difficult competition, and no surprise that, with few notable
exceptions, those who manage to get a meaningful result are
not beginners, but teams with significant research and hands-
on experience. Here, when we speak about a “meaningful
result” we mean something that could be useful in practice,
that is with the system running from start to end of at least
one trial and obtaining a score (third quartile of error) under
15 m.

Off-site Tracks are less challenging, and in fact they
see higher participation and better scores, mainly because
competitors can carefully tune their systems to the specific
environments without any strict time constraint. An inter-
esting point of off-site Tracks is that competitors share the
same data, which can be used in the future for testing new
algorithms and rigorously comparing them with today’s state
of the art, something which is not possible for the on-site
Tracks.

Starting from the above considerations, the competition
chair made several decisions, which were then discussed
and approved by the Track chairs. The first decision was
that using the same location for all Tracks is a plus and
should be an aim of the competition, meaning that chairs of
Tracks 3 and 4 had to travel to the competition site some
months in advance for a survey and measurements. At the
same time, it was important to avoid using the same markers
for different Tracks, and even to avoid using similar paths
overall, lest competitors applying for more than one Track
were advantaged by this knowledge. This was particularly
important for competitors participation in off-site Track 3,
who had received maps and measurements well in advance
and should not have been able to exploit this knowledge when
preparing for competing in on-site Tracks 1 and 2. As part of
this effort, Wi-Fi measurements were anonymized to prevent
competitors from reusing for on-site Tracks a radio map that
had been generated with the off-site measurements.

The second decision was setting the path for on-site Tracks
to be no longer than 15′ and 600 m, which is long enough to
be challenging for competitors, but not longer. In fact, one
should considered that actors walked that path to survey and
learn it, run the trials and repeat after an error: all in all 10–20
times each, which takes time and energy. A tired actor risks
making errors and having to restart the path from scratch;
moreover, we had a single day to complete the competition,
and any unanticipated severe inconvenience risked having
the organisers exceed the time available to complete all the
trials. This was to avoid at all cost, as all competitors had
put a great deal of effort in preparing and participating in

this competition, and their satisfaction was considered of the
utmost importance.

The third decision was to try and fit the EvAAL framework
as strictly as possible. As detailed in [5], the EvAAL frame-
work includes four core criteria which are the distinguishing
features of the EvAAL framework:

1) Natural movement of an actor
2) Realistic environment
3) Realistic measurement resolution
4) Third quartile of point Euclidean error

All Tracks fit these criteria. Additionally, the extended
criteria are:

1) Secret path
2) Independent actor
3) Independent logging system
4) Identical path and timing

It is easy for off-site Tracks to respect these criteria, while
on-site Tracks can only approximate them.

A further decision was striving to keep the path secret
by applying the marks on the floor just before the start of
the competition, and asking the competitors to stay inside
the competitor’s room for the whole duration of the com-
petition, which was not easy because the competition lasted
several hours and often some time elapsed between the first
and second trial of each competitor. However, this was an
improvement over previous editions, when competitors were
free to wander around the building even after the start of the
competition.

An independent actor (one member of the organiser’s
team) walked the path for both Tracks 1 and 2, while in
previous editions this was done only for Track 1, mostly
because Track 2 requires carrying special equipment, so
instructing the actor on how to use it was not always easy.

An independent logging system was used for Track 1, as
in past editions, and also for those teams of Track 2 whose
system run on a smartphone.

As in previous editions, the path was too long to force
identical path and timing for all trials. In practice, the times
needed by the actor to walk the entire path was in the range
from 11′6′′ to 15′2′′, depending on their walking speed.

B. MAPPING THE CNR AREA

The location used for the IPIN 2019 Competition is a ”CNR
Area” hosting a dozen research institutes belonging to CNR
(Italy’s National Research Council), for a total of over 2500
among staff, PhD students and research associates. The area
is composed of several buildings. The evaluation path and the
allowed area for the competitors’ survey included significant
parts of the largest two buildings, both three floors above
ground, and the outdoors area around them.

The usable indoor area depicted in figure 1 spans about
6000 m2 on three floors, to which a surrounding outdoor
area of about 1000 m2 should be added. The usable indoor
area is mainly composed of corridors but also includes an
auditorium and a canteen, with lifts and staircases connecting
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FIGURE 1. Ground floor map of the usable indoor area

floors. Corridors are straight and meet at 90°, they are about
2.5 m wide and 2.7 m high. They are visually very similar to
each other, and in fact it is easy to get lost in the building even
for people used to it. Wi-Fi access points cover the whole
area, indoors and outdoors.

As an example of the general criteria used to create the
evaluation paths for all Tracks, Track 1 chairs imagined a
typical walk done by staff during a normal working day. The
actor starts from the first floor in building B (see figure 1),
reaches the auditorium at the ground floor of building A and
then the canteen. During this first section of the path the
actor goes through three fire doors and a staircase. In the
canteen, the actor sits down for 60 s to simulate a lunch break,
then reaches a meeting on the second floor of building B.
This second part of the path includes a 50 m outdoor walk
connecting two buildings, plus two staircases, two lifts, and
four fire doors. The path goes through 75 key points for a total
length of 544 m, which the actor walks in about 15 minutes.

For all Tracks, positioning the key points is done so that
they are no closer each other than about 2 m and not farther
away than about 10 m indoors, with an average distance of
about 7 m. key point positions were carefully measured using
a laser distance meter with respect to the walls and then
accurately reported on a georeferenced map using Qgis.

For on-site Tracks 1 and 2, key points are placed in such a
way that, when the actor walks over a key point, the next one
is always in sight. This (loose) constraint was put in place
to ease the actor’s job, because if a key point is missed or

walked over in the wrong order, the actor needs to restart the
path from the beginning.

Georeferencing was done by getting the coordinates of
many reference points of the Google maps satellite view and
feeding them to Qgis. The inaccuracies deriving from this
procedure are irrelevant as far as the indoor path is concerned,
as the georeferenced map was shared with the competitors.
Hence, the indoor reference system was the same for all.
Inaccuracies could arise on the external path, but we can
argue that the problem is minor for several reasons. First,
the outdoor path included few key points; given that the
measure is based on the third quartile, a couple of errors
larger than normal have little influence on the result. Second,
we measured the GNSS readings of these points on some
smartphones and the error was in the range of 1 m with
respect to our georeferenced map. Third, the outdoor path
was quite short and simple, and the whole area was covered
by many Wi-Fi signals, so competitors could keep using the
same pdestrian dead reckoning (PDR) and radio sensing al-
gorithms as indoors. Fourth, the position of doors was known
to competitors beforehand, thus preventing the possibility of
significant errors while entering and exiting the buildings.

C. MEASURING THE PERFORMANCE OF COMPETING

SYSTEMS

Competitors of the on-site Tracks were provided with
StepLogger, a measurement app for Android with two func-
tionalities. The first is interfacing with the competing app
by receiving and logging periodic positioning estimates. The
second is displaying a button with a label on it that the actor
taps when walking over the same-labelled key point.

StepLogger logs the positions, estimated by the competing
app with a suggested rate of twice per second. The estimated
position is logged to a file. A log entry reads as [time, x,

y, z] where time is in milliseconds from the Unix epoch,
x and y are longitude and latitude expressed in decimal form
with at least six decimal digits and z is the floor as an integer.

The reason why we use an app to log the estimates rather
than letting the competing app do it is to discourage cheating
on timestamps or recomputing of past coordinates, given that
we want to measure the real-time performance of competing
systems.

StepLogger displays a big button with the same label as
marked on the next key point along the path. When the
actor approaches the key points, he checks that the label
on the marker is the same as the button’s and prepares to
tap the button the moment he is precisely over the marker.
Upon tapping the button, StepLogger logs the label and a
timestamp to a second file, and displays the next label on
the button. Each log entry reads as [time, label]. The
reason why the label is shown on screen is for the actor to
check that he is following the right path and has correctly
tapped once per key point.

The two log files are saved on the smartphone and given
to the organisers at the end of each trial. Together with a
third file, which is unknown to the competitors and contains
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FIGURE 2. Screenshots of the released app.

the ground-truth positions of the key points, they provide
all the information needed to evaluate the point errors and
compute their third quartile, which is the final result. The
Octave application Evaalscore is used to produce all the
statistics, graphical output and a movie representing the path
and estimation errors, useful for organisers and competitors.
The source code of Evaalscore and its output computed over
the competitors’ results is available at http://evaal.aaloa.org/
2019/detailed-results.

StepLogger runs in the foreground, while the com-
peting app which estimates the device position acts as
a background service. The integration between the two
apps exploits the AIDL formalism (Android Interface
Definition Language). The AIDL file defines the in-
terface IStepLoggerService which implements the
logPosition(timestamp, x, y, z) method. The
competing app can discover and bind to a provider of
IStepLoggerService by following two simple steps:

• create an Android Intent with BOUNDSERVICEPACKAGE
set to an BOUNDSERVICECLASS set to StepLog-
gerService;

• invoke the bindService(...) method in order
to bind to the Android service implementing the
IStepLoggerService interface.

The StepLoggerClient app is a development aid mimicking
the expected behaviour of a competing app. Last, StepLog-
gerV2 is a modified version of StepLogger which runs in
the background, thus allowing the competing app to run in
the foreground. Figure 2 shows a screenshot of StepLogger,
StepLoggerClient and StepLoggerV2, respectively. The soft-
ware package is available at http://evaal.aaloa.org.

D. COMPETITION RESULTS

The “accuracy score” for each trial was computed for each
team by comparing the estimated coordinates with the ground
truth, that is reference coordinates of the key points marked
on the ground along the path. This metric combines the floor
detection accuracy and the horizontal positioning error.

ε = ‖PR −PE‖+ p · |fR − fE | (1)

where

• PR is the vector with the ground truth horizontal coor-
dinates

• PE is the vector with the horizontal coordinates esti-
mated by the competitors

• ‖PR −PE‖ is the horizontal error, and it is computed
as the Euclidean distance between the ground truth and
the estimated position provided by the competitor in the
2D space.

• p is the base floor estimation error penalty and is set to
15 m.

• |fR − fE | is the absolute difference between the actual
floor number and the estimated one.

The point error ε is computed for all key points marked on
the ground that define the path of a specific challenge. The
“accuracy score” s is given by the third quartile of ε:

s = 3rdquartile {ε} (2)

The team with the lowest score wins the challenge. Table
1 shows the scores for all the four Tracks. Some additional
metrics included in the ISO 18305 Standard are also reported
in the table. Figure 3 depicts the cumulative distributions of
the accuracy score s for the winners and runners-up of the
four Tracks.
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FIGURE 3. Cumulative distributions of point errors (equation 1)

IV. TRACK 1 - SMARTPHONE-BASED (ON-SITE)
A. TRACK DESCRIPTION

The purpose of the first on-site Track, namely “smartphone-
based”, is to assess and measure the ability of competing
systems to accurately identify their position inside a large,
public indoor area using a hand-held smartphone only. To this
purpose, competitors are requested to develop a smartphone
application able to estimate indoor positions in real-time.
Only one commercially available smartphone per competitor
can be used. The competing app must run entirely on the
smartphone and can use any built-in sensor available (i.e. no
access to remote services like external databases or remote
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TABLE 1. Results for all Tracks. The first column is the competition score (equation 2

Track Team
3rd quartile [m]

Score
Mean [m] RMSE [m] Median [m]

percentile [m]
95th

detect rate [%]
Floor

reference
Section

Track 1

SNU-NESL 3.8 3.3 4.4 2.6 7.3 100.0 IV-B1
TLBS 7.4 7.1 12.4 3.6 28.8 91.8
STEPS 12.9 11.7 14.9 9.8 19.8 100.0 IV-B2
MITLab 24.2 22.7 34.1 16.9 85.5 76.7 IV-B3
YNU-MCL 65.5 37.8 52.0 26.2 112.4 100.0 IV-B4
INDORA 75.3 57.5 62.9 59.9 100.9 41.1 IV-B5

Track 2

HANA Micron 3.6 4.3 6.8 2.2 18.6 100.0 V-B1
Ariel 8.5 5.7 9.0 2.1 25.3 91.8 V-B2
XMU 14.8 7.8 12.5 1.7 28.5 100.0 V-B3
Kyushu Univ.* 108.8 82.8 92.5 88.1 156.0 63.4 V-B4

Track 3

INTEL LABS 2.3 2.0 2.6 1.5 6.2 100.0 VI-B1
Naver Labs EU 2.4 1.7 2.1 1.3 4.4 100.0 VI-B2
IOT2US 2.5 2.1 2.6 1.8 5.5 100.0 VI-B3
AraraDS 2.6 1.9 2.4 1.5 4.9 100.0 VI-B4
TENCENT 2.7 1.9 2.4 1.4 4.8 100.0
XIHE 2.9 2.4 3.2 1.7 6.9 100.0
UMinho 3.0 2.4 3.0 2.0 6.0 100.0 VI-B5
FINEWAY 3.5 2.7 3.6 1.9 8.4 100.0
UGent 4.1 3.4 4.4 2.4 8.9 100.0 VI-B6
TONJGI 5.1 4.2 5.5 3.2 12.0 98.9
INDORA 6.6 3.9 5.8 2.0 12.6 100.0 VI-B7
YAI 6.9 5.0 6.4 4.3 12.3 100.0 VI-B8

Track 4

KIU SNU 1.6 1.2 1.5 1.0 3.2 100.0 VII-B1
KIT 1.7 1.4 1.8 1.1 3.8 100.0 VII-B2
AOE 3.5 3.1 3.3 3.0 4.8 100.0 VII-B3

* The provided estimations did not include all evaluation waypoints

FIGURE 4. Track 1 and Track 2 multilevel path and example of key point.

servers is allowed). The app is integrated with the measure-
ment app (see section III-C.

Competitors are provided in advance with a detailed map
of the area, while the chosen path for the competition is
disclosed only when the competitors start the trial. Teams can
access the area the day before the competition to survey the
area themselves, take measurements where needed (e.g. make
measurements of the Wi-Fi network signals) and ensure that
their app interacts correctly with the measurement app.

On the day of the competition, for each team, an inde-
pendent actor walks along the reference path while holding
the smartphone in hand. At the beginning of the trial, the
competing team can very briefly configure their smartphone.

Next, the actor starts to walk at a natural pace along a
loosely-defined reference path, equal for all competitors. The
path connects some tens of key points identified by markers
placed on the floor, spanning multiple floors and multiple
buildings. The list of IDs and positions of the key points is
the ground truth. When the actor steps above each key point,
he sets a time mark using the measurement app. The actor
is not required to keep the phone in any specific position or
orientation: typically the actor moves his hand freely and taps
on the screen at key points. We estimate that a trained actor
will generate timestamps with an error smaller than 250 ms
in time and less than 0.5 m in space. When the actor makes
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an error, like forgetting to tap on the screen or missing a key
point, the trial is stopped and restarted.

The competing app provides estimated coordinates with
a suggested frequency of 2 Hz to the measurement app;
only the last estimate before each time mark is taken into
account when evaluating the competing system accuracy. The
competing app must provide (x, y, z) coordinates in the
WGS84 coordinate system, where x is longitude, y is latitude
and z is the floor number, 0 being the ground floor. For all
competitors, the actor needs approximately the same time to
follow the path, passing through all the key points in the same
order. The path includes pauses, loops and any kind of natural
movement. Each team of competitors has two trials, and the
best score is used as the final result.

The path shown in figure 4 spans areas with different char-
acteristics chosen to be challenging for competitors: straight
corridors alternate with small and medium open areas such
as the auditorium and the canteen. If, on one hand, staircases
are well managed by systems based on pedometers, on the
other hand the presence of lifts requires a careful evaluation
of signals such as Wi-Fi and barometer. Systems based on
magnetic field could suffer in some regions, for example
when the actor nears a closed fire door or stops in front of
a business coffee machine.

B. INDOOR POSITIONING SOLUTIONS PROVIDED BY

COMPETITORS

1) SNU NESL Team

SNU NESL is based on PDR, which can be performed solely
using inertial sensors without need of any infrastructure.
When a PDR system is mounted on the foot of a pedestrian,
zero velocity update (ZUPT) can be performed during the
stance phase, where the IMU remains still for a short time in
the middle of a step [11]. ZUPT compensates for the drifting
errors generated by integrating low-cost MEMS inertial sen-
sors when using the conventional strapdown INS algorithm,
or integration approach (IA).

If a PDR system is implemented on a handheld device,
ZUPT cannot be applied, making the integrated navigation
solution diverge in a short time. In this case, the parametric
approach (PA) can be applied [12]. PA-based PDR does not
provide continuous information. Instead, the current position
is computed at every step using the estimated heading and
distance between two subsequent steps.

a: PA-based PDR

The output of a PA-based PDR system is as many 2.5D
position vectors as the number of steps the user made. The
block diagram is shown in figure 5. The magnetometer in
addition to IMU is used to perform three main procedures.

Once a step is detected, user position can be updated using
the heading and step length as in (3).

[

pn,k
pe,k

]

=

[

pn,k−1

pe,k−1

]

+ l

[

cos(ψ)
sin(ψ)

]

. (3)

FIGURE 5. Block diagram of PA-based PDR.

FIGURE 6. Block diagram of IA-PA fusion.

where p is the position of the user with subscript k for
the kth step, and subscripts n and e for the north and east
direction, respectively. l and ψ denote the estimated step
length and heading, respectively.

The name PA mainly originates from step length estima-
tion model. The distance between the two steps is determined
from the fixed parameters. As some earlier work suggests,
there is a linear relationship between step length and walking
frequency [13]. There are numerous other features such as
the accelerometer variance which can be used to estimate the
step length depending on the mounting position of the IMU.
But assuming that step is correctly detected, using only the
walking frequency makes it possible to mount the IMU on an
arbitrary position. Equation (4) shows the parameterised step
length, where WF stands for walking frequency.

l = α · WF + β. (4)

b: Compensating the errors of PA

Two of the main error sources of PA-based PDR system are
the heading offset and the step length accuracy. First, the
heading of the device and the user are assumed to be the
same, and if the assumption does not hold, it can result in
large errors. Even if the step length parameters regressed
from huge amount of data are used, uncertainty surely exists
among the parameters. We fused IA- and PA-based PDR
systems to compensate for the two errors as shown in figure
6.

Three different conditions are possible depending on the
walking scenario. First, when the user is walking in a straight,
normal condition and the heading offset is small, both the
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step length and walking direction from the PA module are
assumed valid.

If the user is walking in a normal condition but the device
heading does not match the user’s, the estimated step length
from PA can be used as a measurement for the IA module.
Finally, if the step length computed from IA is a lot shorter
than the estimated value from PA, pure INS is performed
without using the output of the PA module. Such cases may
correspond to a turning of the user or a transition between
different mounting positions.

2) STEPS Team

STEPS is a smartphone indoor positioning system based on
recent AR (Augmented Reality) and Mixed Reality tools
such as Google’s ARCore or Apple’s ARKit. The AR tools
are used as a visual pedometry (scaled optical flow) sensor,
which is then fused with an advanced version of localisation
particle filter to produce a both accurate and robust solution
for various indoor positioning applications. The presented
method allows a simple and efficient mapping solution that,
combined with the localisation particle filter, allows 1–2 m
positioning accuracy in many standard indoor scenarios.
While a naive algorithm is relatively time efficient, its pre-
cision might be insufficient in cases of large areas with few
constraints. In this section we proposes a particle filter-based
algorithm with advanced methods to improve accuracy and
robustness.

a: Floor-change detection:

In order to generalise the localisation algorithm from 2D to
3D (i.e., 2.5D) we need to define a method for detecting
floor change. An error of “wrong floor” is both significant
for the user and may cause significant errors related to
wrong constrains applied by the “wrong map”. At first we
used both barometer sensor and 3D optical flow in order to
estimate the elevation of the user. Both methods are relatively
sensitive to changes in the elevation, yet both tend to drift.
Moreover, 3D optical-flow methods will not be able to detect
vertical movement in an lift. Therefore, we have designed the
following floor-change filter which is mainly based on rapid
changes in the barometer readings2 (for simplicity we assume
that the barometer sampling rate is fixed):

1) On start, let z0 be the initial altitude – estimated
according to the barometer output, let ∆z0 = 0, let
p < 1 be some positive parameter, usually related to
the barometer sampling rate, e.g., p = 1

Hz
.

2) On barometer reading (zi), let ∆zi = p(zi − zi−1) +
(1− p)∆zi−1

3) If ∆zi > Cup (some positive elevation rate) assume
the user is going up;

4) else if ∆zi < Cdown (some negative elevation rate)
assume the user is going down;

2An improved algorithm may also fuse the 3D optical-flow sensor reading
with the barometer sensor using a Kalman filter.

FIGURE 7. 2D multicolor map example used in the advanced algorithm. White
(A) represents accessible areas, black color (B) represents fixed ares (in this
case walls), grey (C) represents dynamic inaccessible areas (tables in this
case) and yellow (D) represents stairs and lifts.

5) else assume the user is on a flat floor, if the user
was going up or down estimate the elevation-change
between the current z and the last flat-floor parameter.

Initially when no knowledge about the current floor if pro-
vided, the particles are randomly spread among all floors.

b: Mapping
The advanced particle filter algorithm relies on the existence
of a pre-made map of the region of interest. Such map is
assembled by our system using the following technique:

1) AR measurements tools surface detection, which al-
lows us to conclude the sampled region of interest
boundaries;

2) map representation in the form of painted image, using
the defined colors: A, B, C, D to represent the verity of
the different constrains.

The colors will be placed on the map according to the
following logic:

• A: accessible area;
• B: inaccessible area, such as walls, fixed barriers, etc. as

sensed by AR tool;
• C: partially accessible regions: this area represents lo-

cations with relatively low probability for a user to stay
(e.g., tables);

• D: floor changing regions, such as stairs, escalators and
lifts.

A 2.5D map such as presented in figure 7 will be the base
for the particle filter algorithm, and will later on be used to
determine the particles grade.

c: Velocity estimation
Indoor navigation methods often use the device IMU sensor
in order to implement a pedometer which detects the device
global orientation and counts “steps”. Yet, such method intro-
duces significant inaccuracy both in the measured distance
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FIGURE 8. Particle filter for localisation. Left: init state, the particles are uniformly distributed. Middle: using the short motion vector the particles are beginning to
organise in few clusters. Right: the particles converged to a single position cluster - mainly due to floor change detection. The lower graph shows the barometer raw
measurements (in PSI) vs. time. The detection of floor change allowed the algorithm to converge efficiently to the right 3D location.

and in the orientation i.e., some steps are larger than other
and the device orientation is only loosely correlated with the
walking orientation. Therefore, we use optical flow with plan
and range detection [14] in order to estimate the user move-
ment with high sampling rate, which allows an improved
distance approximation and fusing optical features to reduce
IMU drifts.

d: Particle filter for localisation

This section discusses possible naive particle filter algorithm
for localisation estimation.

A particle filter represents the posterior distribution of a set
of particles P (|P | = n) on a given map; the result of such
algorithm (for each step) is a new set of particles P ′ with a
(slightly) different distribution. The goal of this algorithm is
to get all the particles to converge in one area on the map in a
few steps (re-sampling). After converging, the internal state
(location) will be the average location of the best particles
(the ones with the highest grades).

Algorithm 1 explains the process of the particle filter
method using mobile pedometry sense.

e: Software interfaces

The proposed system is based on the following interfaces:

• Android’s Fused Location Provider API: Provides lo-
cation data based on combined signals from the device

Input: Black and white 3D map of the navigation
area.
Init: generate a set P of n particles. For every xi ∈ P

a random location < x, y, z >, orientation w and
grade g are set where xi are uniformly distributed
over the map.
Result: Estimated Step location and orientation vector

: l =< x, y, z, w >

for Each step do
1) Estimated location for each step < x, y, z, w > to

current (via mobile AR measurement tool)
2) Calculate the step vector di = current− prev

3) Apply the Move function on all particles in P
4) Apply the sense function on each particle in P
5) Evaluate the weight of each particle according to its

new position on the map
6) Re-sample all particles into P ′

7) Estimate the current position by calculating the
particle’s average location in P ′, considering their
weights

end
Algorithm 1: Generic particle filter localisation algo-
rithm: a black and white map is used in order to present
the geo-constrains used by the particle filter.
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sensors using a battery-efficient API. The fused location
provider manages the underlying location technologies,
such as GNSS, Wi-Fi, BLE, and 4G. The API provides
both location and expected accuracy.

• Android Sensor Orientation (Compass): Provides an
orientation based on the internal IMU. This API not very
accurate and provides no reliable accuracy estimation.

• Google’s AR-Core: it is an SDK which provides an API
for all of the essential AR features like motion tracking,
environmental understanding, and light estimation. We
have used the AR-Core for optical tracking. In general
the AR-Core tracking has a 1–2% error in 2D at 30 Hz.
Such results are significantly better than pedometers,
yet, the use of AR-Core raises few issues including:
privacy, energy consumption and dealing with the Kid-
napped Robot Problem.

3) MITLab Team

In contrast with the IPIN 2018 competition, which was held
in a shopping mall [9], this year’s indoor testing ground has
long narrow corridors as well as large halls and cafeterias.
The 554 m testing route also passes through outdoor areas
like connecting roadways to different buildings, with pauses,
loops, closed doors, staircases, and lifts along the way. And
Track 1 teams can only use sensors and computation re-
sources on their smartphones.

In order to overcome the challenges where the path covers
a vast area, we planned a multi-stage offline training and
online inference ensemble learning scheme improved from
our previous works [15] as the primary absolute localisation
method, and a secondary relative localisation method to
refine the localisation results utilizing PDR, based upon an-
other of our previous works [16]. It consists of Data collector;
Cloud Server Training, and the Real Time Location System
(RTLS) application running on the smartphone.

The Data collector aggregates and processes gathered
wireless signal information from partitioned grids of the
whole testing area, and sends it to Cloud Servers for offline
training and finding the best-optimised parameters for online
inference. During the testing phase, the RTLS application
running on the smartphones would produce more accurate
prediction results based on these parameters. The whole
process flow of our primary system is shown in figure 9.

a: Data collection and aggregation

Pruning: Fingerprinting technique relies on finding the best
match from gathered fingerprint data sets. In a large testing
ground subdivided into many smaller local grids, the feature
length of each fingerprint record would impact the perfor-
mance of our RTLS application running on smartphones.
To achieve less than a fraction of a second inference time,
unstable and weak signal sources were pruned before the data
aggregation stage, where only a limited amount of unique and
strong stable sources are used as features in the fingerprinting
training data set.

 
 System Structure 

FIGURE 9. System structure.

Merging and Enriching: Some spots inside small local
grids, such as behind metal gates, next to thick building
support columns, and especially staircase landing areas, only
receive weak and unstable wireless signals or even no signals
at all due to large-scale and small-scale signal fading. Hence,
additional data collection is required to merge them into the
existing data set and enrich it in order for fingerprinting
scheme to properly distinguish them. This is where our
planned secondary PDR scheme could be of use for identify-
ing nearby grids and as a backup to bind localisation results
within certain boundaries [17].

 
 Examples of weak signal grids FIGURE 10. Examples of weak signal grids.

b: Data wrangling
The shadowing effect in a complex indoor environment
would cause signal strength to fluctuate locally. The gathered
and aggregated data need to be further smoothed and cleaned
to improve the prediction outcome. Later on, within the
RTLS module, similar data transformation is also performed
for more stabled prediction results.

c: Hyperparameter optimisation
Hyperparameters for machine learning algorithms have a
serious impact on prediction and affect our RTLS module
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inference time and performance. In order to find optimal
hyperparameters, training and independently gathered veri-
fication data were put through many simulations in our cloud
servers. The obtained hyperparameters are sent back and set
for the RTLS for testing on smartphones.

4) YNU-MCL Team

YNU-MCL is based on a multi-sensor fusion approach where
multifarious sensors provide support to enhance the locali-
sation accuracy. The proposed system incorporates the data
from a variety of sensors including Wi-Fi, magnetometer,
accelerometer, gyroscope, and light sensor. The proposed
system is shown in figure 11 . The system is comprised of
multiple modules and a brief description of each is given here
separately.

FIGURE 11. Flow chart of the proposed system.

a: Light sensor (luxmeter)

The current system makes use of smartphone light sensor
to discriminate between indoor and outdoor environments.
Since the positioning area for the competition includes both
indoor and outdoor space, it is very important to determine
the space where the user currently is, as well as the transition
from indoor to outdoor and vice versa. This helps in turning
on and off the different sensors that are used for indoor and
outdoor localisation. For example, when the user moves from
outdoors to indoors the GNSS is turned off.

b: Pressure sensor

The localisation space for the IPIN 2019 Competition is
a multifloor indoor space where the path at each floor is
different. So the floor detection is important to determine the
current position of the user. Although the magnetic field data
has been reported to be used for floor detection [18], yet the
pressure sensor is a reliable source for floor detection in the
short run. Floor detection is performed using the following
equations:

{

Pval > Pavg2f +
Pdifffloor

2
Floor 2

Pval > Pavg2f + 3
Pdifffloor

2
Floor 1

(5)

where Pval, and Pavg2f represent the current pressure
reading and average pressure reading for floor 2 while
Pdifffloor

is the difference in pressure measured at various
floors.

c: Pedestrian dead reckoning
The PDR part consists of three sub-processes including step
detection, step length estimation and heading angle estima-
tion. The data from the gyroscope and accelerometer are
used to this end. Step detection is done with the help of an
empirical threshold that is used on the accelerometer data.
The modified Weinberg model [19] is used for step length
estimation as follows:

Sl =
k
√
amax − amin (6)

where amax and amin represent the maximum and minimum
acceleration when a step is detected and the value of k is
found empirically and may vary with the height of the user.

The current position of the user can be calculated using:

xi = xi−1 + Sli−1
× cos(ψi−1) (7)

yi = yi−1 + Sli−1
× sin(ψi−1) (8)

where ψ represents the heading estimation of the user for
the given time.

d: Wi-Fi and geomagnetic positioning
The Wi-Fi and Earth magnetic field data is utilised to deter-
mine the current position of the user. Since Wi-Fi requires
longer scanning time, periodic Wi-Fi scans are used which
can help to make periodic corrections in the current position
of the user. The Wi-Fi positioning is based on the enhanced
fingerprinting approach proposed in [20] and makes use of
multiple features from the fingerprint vector. The magnetic
field data are used to calculate the current position of the
user. The fingerprinting technique presented in [21] is utilised
to build the fingerprint database. The floor information from
the floor module helps to load the magnetic database which
the user is currently at. Similarly, the position from the
PDR module serves to narrow down the search space for
the magnetic field database and helps to get a more accurate
position. The positioning algorithm gets three positions from
PDR, Wi-Fi and geomagnetic modules. Here an extended
Kalman filter (EKF) is used to get the current position of the
user which is displayed on the smartphone screen.

5) INDORA Team
Participating in localisation competitions is beneficial to eval-
uate proposed solutions, to observe the application in new
unfamiliar buildings and to identify key tasks for the further
development and research. The core part of our approach is
the same as used for IPIN 2018 on-site competition and IPIN
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2019 off-site Track. Unfortunately, technical problems were
not overcame during the trial, which resulted in unsatisfac-
tory error value. However, a brief analysis of the performance
reveals a potential to reduce the output error with the few
improvements detailed below.

a: Overview of positioning method
The proposed approach consists of Pedestrian Dead Reck-
oning (PDR), grid-based Bayesian filtering and map model
incorporation. The position estimation is updated when a
step is detected based on acceleration measurements. PDR
method computes a new location estimation related to the
current position using a fixed step length and a step heading
computed from sensor values.

The floor plans provided before the competition are pro-
cessed using a custom semi-automatic map editor. The walls
and accessible zones are annotated and the map model for
each floor is tessellated into a regular grid with a 33× 33 cm
grid cell size. The localisation is performed on a single
floor. When a floor transition is detected based on significant
changes in barometer measurements, the new map model
for the floor is loaded and the localisation process is reset.
The initial position on such floor is chosen from a list of all
possibilities to enter the floor, i.e., locations of stairs and lifts.

Bayesian filtering technique is applied to reduce the er-
ror introduced by noisy sensor measurements and incorrect
parameters, e.g., step length estimation. Unlike most re-
searchers and competitors, we do not use Particle or Kalman
filter but grid-based Bayes filter [22]. This filter is deter-
ministic discrete implementation of the Bayesian filtering,
in which the belief value (probability of the current user
location) is computed for fixed points. These points are grid
cell centers of the regular grid obtained from the map model.
The approach allows to cover the whole map and to use
convolution to accelerate the computation but is not able to
focus on some areas with higher resolution as Particle filter.
In our system, the grid-based filter is implemented in a way
that reduces the impact of space discretisation. The belief
is computed for the whole grid cell but the position is not
always attached to the center of the cell but it is chosen from
a list of possible positions within the grid cell (implemented
as a new grid layer).

An ad hoc method was added to the system to overcome
a problem observed in off-site Track and during competition
preparation. The light sensor was used to distinguish between
a standard corridor and a balcony hallway which are parallel.
The distance between them is a few meters. Therefore, it
is possible to select the wrong path when the positioning
error increases after a long straight walk. Moreover, a few
configurations for centroid grid-based filter and an alternative
positioning method were prepared to apply based on the
outcome from the first trial.

b: Method performance analysis
The score from the competition (third quartile error 75.3 m)
does not describe the true characteristic of the system. The

Android application crashed during all trials and produced
only a few first location estimations. For the results computa-
tion, the last known estimation is considered as the current
location. After the competition, the same experiment with
checkpoints was performed by the author with the same
device to record raw sensor data for further analysis.

The performance with working application raised the score
to 143.8 m. The building with its specifics was quite chal-
lenging. We identified main problems and implemented some
changes to reduce the output error.

One of the core problem inside this building was caused
by incorrect floor detection, even though all transitions were
detected and the correct floor was calculated. Our approach
finds the closest entry point to the target floor and set the
initial position on that floor accordingly. In this building,
there are lots of lifts and staircases on a small area which
was not the case in the shopping mall at IPIN 2018 or in our
scenarios at university in Slovakia. A possible solution is to
utilise the Bayesian filtering and to choose not only a single
initial location but to assign probabilities (according to the
distance from the estimated position) to selected locations
representing entries to the floor, e.g., lift doors or a fixed
position near staircase. The performance with corrected floor
transitions decreased the score from 143.8 m to 38.7 m.

Another issue was the step heading estimation. The com-
puted device orientation was observed drift in some situa-
tions. The step heading computation method was modified
and simplified a score 33.9 m was achieved with the same
configuration as used for the competition. More experiments
were performed with different parameters, e.g. step length
estimation or orientation variance and the third quartile error
was between 30 and 40 m.

Moreover, the path was split into segments formed by
consecutive positions on the same floor. Every section was
analyzed separately. There were segments with satisfactory
score (less than 5 m for all checkpoints) or with error which
was observed to be caused by the step heading inaccuracy.
However, the longest segment produced a large error com-
pared to other shorter segments. This segment consists of 27
checkpoints and covers the area outside the building, sitting
in the cafeteria and the main auditorium visit. Our system was
not able to detect the entering in the building from outside,
with scores increasing from 17 to 86 m on this segment.
Using the light sensor to detect the indoor-outdoor transition
decreased the overall score to 22.1 m. After tuning of the step
length and other parameters, a score of 16.2 m was obtained.
This analysis reveals the main drawbacks of the proposed
system with possible solutions for future application.

V. TRACK 2 - VIDEO BASED (ON-SITE)
A. TRACK DESCRIPTION

This competition Track is designed to test state-of-the-art
vision-based positioning for pedestrian under realistic nav-
igation environment. It was the second on-site challenge
focused on the main use of camera, after the 2018 edition.
Track 2 requirements are as follows:
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FIGURE 12. Challenging conditions in Track 2: looks similar, Narrow isle,
Darkness, Sitting, Reflection, Indoor& Outdoor environments.

• Hardware: Competing system should be engineered or
implemented in the form of a localisation system that
exploits vision sensors (RGB camera, depth camera, or
similar devices), except laser based technologies (i.e.
Lidar).
Mobile laptop or tablet PC, smartphone etc. can be used
to process the vision data stream.
An actor carries the competing system, which should be
located on the upper part of the body.

• Operation: An actor with the organisation wears the
competing system and follows the path through the
key points. Immediately after completing the path, the
competitor submits the log file to the organisers for
evaluation.
Any kind of interaction and data manipulation is not
allowed during the trial. Final scores are computed by
comparing the position errors between the estimated
coordinates and the key point coordinates.

Applied technologies in Track 2 can be summarised with
keywords such as Visual-Inertial Odometry, Visual SLAM,
Visual Landmark Localisation with the aid of Deep Neural
Network and Bayesian Filters. Several technical challenges
were identified during the competition, which were major
hurdles for vision-based localisation. Figure 12 shows the
situation. The corridors looked similar from all points of
view, so it was not easy to extract unique features to be used
by computer vision algorithms. Competitors went through
several closed doors which caused darkness. Reflection from
a vending machine and outdoor sunlight affected the perfor-
mance of the competing systems.

FIGURE 13. Intelligent Positioning Engine.

B. INDOOR POSITIONING SOLUTIONS PROVIDED BY

COMPETITORS

1) HANA Micron Team

Pedestrian Dead Reckoning(PDR) is a widely used position-
ing approach. PDR is popular technology of indoor posi-
tioning because this technology needs only compact inertial
sensor modules such as magnetometer, accelerometer and
gyroscope [23]. Most PDR systems are focused on detecting
step events by using accelerometer and calculating direction
of the pedestrian by using magnetometer and gyroscope to
track the current location. Therefore PDR has an advantage
over other localisation approaches in that it does not require
additional infrastructure.

But PDR is rarely used independently. Since PDR is a
relative positioning approach, it needs reference coordinates
to track the absolute locations. Also if PDR is working inde-
pendently then there is no way that we can revise the position
when the PDR’s cumulative error increases too much. So
we need a new technology which provides reliable position
to revise PDR’s error. One way to adjust inaccurate PDR
is using functionality provided by mobile platforms. Apple
provides a lot of features that can be used easily. One of
them is the iOS native framework, with which we can localise
the phone’s position and calculate many useful attributes for
positioning.

The iOS native framework supports camera position detec-
tion and plane detection. It combines a camera and a motion
sensor to calculate the relative position in 3D coordinates
for what is currently visible and estimates the location of
the smartphone. The iPhone’s motion sensor is relatively
stable in most situations. PDR is vulnerable to sudden posture
changes, but the iOS native framework is powerful in that
regard. When the pedestrian is not walking, the camera pos-
ture is fairly accurate. On the other hand, when the pedestrian
starts walking, the step length increases in error. In order to
compensate for this, combining camera position with PDR is
very important.

Hana Micron Business Development Team has success-
fully provided mobile indoor navigation service for the
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FIGURE 14. System for the competition.

FIGURE 15. Predefined step direction in GIS.

stadium at the Pyeong-chang Winter Olympics by indoor
positioning technology with integrating BLE beacon, GNSS,
Vision and PDR. And we made our Intelligent Positioning
Engine (see figure 13). It contains our GIS(Geographic In-
formation System). We joined the IPIN 2019 Competition by
fusing these positioning approaches.

To meet the requirements of the IPIN Competition, for our
entry we designed a simple model as in figure 14 to improve
positioning performance with PDR and the iOS framework.
It uses a method of inferring the optimal movement trajectory
by continuously tracking the attitude of the smartphone with
the iOS framework and combining it with the position and
orientation estimates from the PDR. Accelerometer, gyro-
scope and magnetometer are used to operate our PDR and
we use the altimeter for detecting floor. Camera is activated
for using ARKit which is one of the framework available in
iOS. It is implemented in Objective-C on Apple iPhone.

First of all, we adjust step length using ARKit framework.
ARKit makes virtual space on the real world using camera
and sensors of the smartphone. And we can calculate relative
position and vectors of device from this virtual coordinates.
By default, our system uses the stride length calculated by
the PDR. However, the step length calculated from ARKit is
applied to stairs.

Next we use CoreLocation and our GIS to adjust the incor-
rect step direction. CoreLocation is one of the frameworks
available in iOS, such as ARKit. CoreLocation provides

GNSS information and general direction of device. And we
made up our GIS on the first day. At first, we drew route
network on the map, and we predefined information about the
direction human can walk. Figure 15 shows the predefined
information about a person’s direction on the route network.
With these two factors, step direction of PDR is being cor-
rected.

We apply object detection to our positioning system. Our
approach has three steps. First step is object definition. In this
step, we decide which object will be useful in our system.
After definition, we collect images of the defined object.
And we label the image with what it is. The last step is
model training. The training is performed with labeled object
images. After training, the model is complete and can use it.

Finally, we are ready for positioning. We get the step
length from ARKit or PDR using sensors of smartphone; the
corrected step direction is calculated by CoreLocation and
GIS; if system detects any object using the camera, then it
searches for information on the detected object on our GIS
platform and corrects the user location with the position of
the detected object.

As a result, we scored a third quartile of error equal
to 3.6 m on the competition day. Indoor record is better
than outdoor, since more objects which system can detect
produce a better result, but there are few objects to detect for
correcting position of system outdoors, so it is hard to revise
PDR’s cumulative error on outdoor.

2) Ariel Team

a: System description

The system was originally designed to be a navigation sys-
tem for ground robots. The presented navigation framework
allows a robust real-time positioning using commercial off-
the-shelf sensors. While navigating, the robot is construct-
ing a 3D landmark-map which is used to eliminate sensor
drifts. The system is using optical sensors for both tracking
and landmark detection, combined with inertial measure-
ment unit (IMU) and ranging sensors; the system requires
no calibration in order to report position in global coordi-
nates. The main algorithm is based on a weighted version
of a particle filter which uses optical flow-based odometry,
map-constraints and deep learning-based optical character
recognition (OCR) for landmark mapping. The algorithm is
implemented in python and the main two sensors are an Intel
Real Sense T265 Tracking Camera and a simple wide-angle
camera for landmark detection. Using optical flow and IMU
the system’s relative 6DoF-path is computed. By combining
landmark detection and relative motion, a 3D global map
of detected landmarks is computed. Up on having such 3D
map the system allows visual navigation by correlating the
detected landmarks with those stored in the 3D map. The
correlation is being performed using a localisation particle
filter – which allows a continuous (~20 Hz) localisation
using visual sensors and an IMU. The system runs on an
embedded Linux card such as Raspberry PI4 or Jetson nano
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FIGURE 16. The original robotic optical navigation system. This system was
converted to a handheld PC-based navigation system in order to participate in
the IPIN 2019 Competition.

FIGURE 17. The PC-based optical navigation system used during the
competition.

and allows 1–5 m accuracy and a relatively robust solution
for the Kidnapped Robot Problem.

For the IPIN 2019 Competition the robot navigation sys-
tem was converted to a handheld one, based on a laptop
(Linux OS) which was connected to a tracking camera (Intel
Real-Sense T265, which includes an IMU) and an outer Wi-
Ficard for RF fingerprinting localisation, as shown in figure
17.

The navigation method used the landmark (visual) camera
due to technical software difficulties. The navigation method
used Wi-Fi scans for a global (yet inaccurate) positioning
and the tracing camera for refining such position using a map
constraint via a particle filter localisation method.

b: Particle filter for localisation
The particle filter is as described in subsection IV-B2d. Here
are some additional details about the filter elements.

• Map: The particle filter methods estimates the internal
state in a given area. Thus, the input of this algorithm
is a 3D map of the region, this map should include as
many constraints as possible (for example walls and
tables). The map constraints are one of the parameters
that determines each particle grade as particles with
impossible location on the map will be downgraded.

• Particle: Particles represent the internal state distribu-
tion, so the sum of grades of particles in P is 1 at each

FIGURE 18. The top-left picture shows the initial state of the particles in
uniformly distributed state; the next pictures show how the particles are
beginning to organise in few clusters. In the last picture the particles converge
to a single position cluster.

step. At the initial step each particle xi grade is 1

|P | . The
grade of each particle will be set higher as its location
on the map seems most likely to represent the internal
state.

• Move function (Action function): With each step all
the particles in the map should be relocated according
to the internal movement. Hence, for each step we cal-
culate the movement vector (in 3D) and the difference in
orientation, then we move all the particles accordingly.
The movement in each step is given by the Tracking
Camera T265 which uses the inputs from dual fish eye
cameras and from IMU along with processing capabili-
ties in order to provide the host system 6DoF poses.

• Sense function: The sensors of the device are also used
to determine each particle’s grade. The sense method
predicts each particle’s sense for each step and then
grade it with respect to the correlation between the par-
ticle prediction and the internal sense. In our case, the
sense function can compute the distances to the nearest
wall (right and left) and from landmarks that define and
then compare it to the distance of each particle to the
nearest wall or landmark in the map and change the
particle grade according to the correlation.

• Resampling: The process of choosing a new set of
particles P ′ from P . The resampling process can be
done in several ways but the purpose of this process is
mostly to choose the particles with high weight over the
low weight ones.

• Random noise: Used to prevent particles converging
too fast, and by that risk missing the true location. After
resampling, we move each particle with a small random
noise on the map. Usually this is done by moving each
particle in a small radius from its original location.
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FIGURE 19. Results of the competition.

c: Competition results - Lesson learned

While testing the navigation system during the IPIN 2019
Competition, we have found that the tracking camera is
sensitive to changes in light strength. Thus, few events of
major tracking errors accrued while moving from Indoor to
Outdoor (on a sunny day). Theses errors were too large for
the particle filter to cope with, so while the first 50% of
the competition Track the navigation algorithm was able to
maintain an accuracy level lower than 2 m, at the 75% of the
path the error was exceeding 8 m.

This problem can be partly solved by detecting tracking
“jumps” (tracking inconsistencies) and then simply ignore
the tracking camera sensors in such cases. Although the
overall performance of the system was relatively accurate
(third quartile of error was 8.4 m) we argue that, by using
more robust tracking capabilities and combining the OCR
landmark tracking with the particle filter, one can reach a
GNSS-like accuracy in indoor scenarios.

3) XMU Team

a: Introduction

The accuracy of Wi-Fi positioning is affected by the deploy-
ment density, and it is also easy to receive other interfering
signals. The use of fingerprints requires a certain amount
of collection workload. Geomagnetism uses fingerprint po-
sitioning and does not depend on the external environment.
It also has the workload to collect fingerprints and poor
stability, and the accuracy is low. Inertial navigation po-
sitioning is not affected by the external environment, but
there is a cumulative error. Visual positioning is susceptible
to environmental lighting and other effects, and its stability
is average. Our work is to integrate the above positioning
algorithms, and in some scenarios use the corresponding
good algorithm for correction and short-term replacement,
and finally achieve a good positioning effect and improve the
overall robustness of the system.

b: System structure

The system uses IMU sensors to acquire IMU data, baro-
metric data and a camera to acquire real-time images. We
get GNSS signals from our Android phone. The VIO system
selects the position of the characteristic points as the obser-
vation, while the PDR using an inverted pendulum model se-
lects the vertical zero velocity points as the observation. The

FIGURE 20. Overall framework.

inverted pendulum model is a simplification of the movement
of the lower limbs of the human body, without considering
the effects of knee flexion and the feet soles on waist move-
ment. In order to correct the position and attitude deviation
caused by the bad quality of observed feature points, the
position and attitude of the VIO are replaced by the position
and attitude of the PDR to obtain better performance. The
image landmark is to judge whether it has come to the
calibration place and obtain the calibration information by
comparing the feature points distribution extracted from the
real-time image and the off-line image extracted from the
landmark database. The particle filter fuses together image
landmark location, GNSS location information and walls
constraints. The weight of particle distribution is computed
according to the quality evaluation of each module, so as to
influence the particle distribution and the state of the central
particle.

c: Core problem
For the evaluation of the quality of the observed feature
points of the VIO system, we think that the initialisation
error, the uneven distribution, the sparsity, the movement
and the mismatch of the features points are factors that
affect the quality of observations. Therefore, when these poor
quality observations appear, the state quantity may change
suddenly. At this time, the state is compensated by using the
results of the PDR estimation to eliminate the effect of visual
observation errors.

d: Conclusion
The system uses the MCKF algorithm and the fusion of
multi-source sensors to achieve high-precision indoor posi-
tioning in most scenarios, but the positioning results in some
extreme environments will be biased, such as in scenarios
with few feature points and poor lighting, and there is still
space for improvement.

4) Kyushu University Team
a: GIS-supported mapping for vSLAM-based global
localisation system
We present a global localisation system based on a Geo-
graphic Information System(GIS)-supported mapping with
visual SLAM(vSLAM) [24]. Our system configuration com-
prises a monocular camera and a laptop, to a smartphone. In
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our system, the map of the environment represented in World
Geodetic System (WGS84 coordinates) was first generated
on the set-up day. Then, the camera was relocalised by using
the map on the competition day. The most important task
was the generation of a consistent map represented in the
single coordinate system. Generally, it is difficult to generate
the whole map of a target environment at one shooting
due to insufficient visual features at some parts. Therefore,
a framework for merging separately-generated maps with
reference points generated by GIS software was proposed.

b: Overview
The flow of our framework mainly comprises three steps. The
first two steps were performed on the set-up day.

1) Map generation with reference point selection
2) Map merging with reference points
3) Relocalisation and vSLAM for navigation
In the first step, the map is generated by using vSLAM.

Our vSLAM implementation is based on monocular SLAM
using keyframes and keypoints [25].

First, the target environment is divided into several small
areas. Since the passages were narrow at the competition site,
keypoint tracking in vSLAM often failed at the corners due
large orientation changes. Therefore, vSLAM was performed
for each straight passage.

As illustrated in figure 21, we manually generated refer-
ence points where longitude and latitude are known by using
GIS software3. While performing vSLAM, the camera poses
at reference points were interactively recorded, as reference
point selection.

In the second step, the coordinate system of each map is
merged by using the reference points because each map is
represented in an unknown individual vSLAM coordinate
system. First, the origin of each coordinate system was
shifted to one of the reference points in each map. Then,
the scale and the rotation of the coordinate system were
unified by using the longitude and latitude of the reference
points. Optimisation was performed using a cost function.
Finally, the maps were merged by shifting the origin of each
coordinate system into WGS84.

In the third step, relocalisation was applied using vSLAM
on the competition day. When the competition path was
outside of the map generated on the set-up day, the mapping
was performed for continuous localisation.

c: Result
The difference between the competition path and our path
for mapping is presented in [24]. Unfortunately, there was
no overlap between them. The most difficult issue was the
limited time for preparation. In this competition, the large
site comprised many texture-less and dark locations. The
same passage was captured several times because vSLAM
often failed. In addition, battery life was a practical issue.
Since vSLAM needs significant computational resources,

3https://www.qgis.org

FIGURE 21. Reference points generated on GIS.

the battery was drained in about 30 minutes for the laptop.
Therefore, it was difficult to generate the whole map within
a few hours.

Generally, a large-scale navigation system cannot be re-
alised by using a camera only because vSLAM fails when
visual features are not detected, as we witnessed. Therefore,
sensor fusion with Wi-Fi or 2D map-matching should be
incorporated for a system to be stable. Also, map generation
for a large-scale environment needs to be simplified for fast
set-up.

VI. TRACK 3 - SMARTPHONE-BASED (OFF-SITE)
A. TRACK DESCRIPTION

The third Track is devoted to evaluating smartphone-based
location technologies in an off-site context. For that purpose,
data was collected while walking through the competition
area for training, validation and evaluation purposes. This
Track follows the same data collection and evaluation strate-
gies of the off-site competitions organised in previous years
[9], [26], [27].

The competition area was visually inspected to identify the
most challenging parts of the research campus for the off-
site evaluation and the key points needed for the competition
were selected. In contrast to the IPIN 2018 Competition, a
Wi-Fi coverage analysis was not done as the local organisers
already knew that it was good enough inside the facilities. As
done in the previous competitions, the data provided to the
competitors was collected using the Android app “GetSen-
sorData” [28]. This app automatically gathers data from a
smartphone sensors and allows manually adding user-defined
positions. Key points were added to all collected data sets.
Data was collected in three independent phases: training,
validation and evaluation.

For the three phases, we used a Samsung Galaxy A5 2017
(SM-A520F) phone with Android 8.0. We set the maximum
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sampling rate allowed by each sensor as shown in table 2.
The sampling frequency of the Wi-Fi sensor depends on the
connection status. If it is not connected to any Wi-Fi network,
its sampling frequency is around 0.22 Hz (sampling interval
of around 4.5 s). However, we detected that it dropped to
0.16 Hz (sampling interval of approximately 6 s) when the
phone was connected to a Wi-Fi network. Therefore, we con-
figured the smartphone to prevent it from connecting to Wi-
Fi networks during the data collection. The GNSS data only
provides an estimation of the global coordinates in WGS84
provided by the GNSS sensor and the network information.
A future versions of “GetSensorData” will be able to collect
raw GNSS data. The indoor positioning community is invited
to suggest changes, add new features and, in general, improve
this data collection tool [28].

Sensor Model & Manufacturer Sampling Freq. (Hz)
Accelerometer STM - K6DS3TR 200
Gyroscope STM - K6DS3TR 200
Magnetometer AKM - AK9916 100
Barometer STM - LPS25H 5
Light Sensor AMS - TMD3725 5
Proximity Sensor AMS - TMD3725 2
AHRS Samsung 100
GNSS GNSS/Network N/A
Wi-Fi ≈0.2
Sound 2

TABLE 2. Information of the sensors in the Samsung Galaxy A5 2017
(SM-A520F).

For the training phase, the Track chairs defined 10 short
trajectories in the area to record the required data. Key points
were recorded at every significant turn, so lines connecting
intermediate points were representative of the trajectory done
and competitors can assume that the trajectory between two
points was almost rectilinear. All those trajectories did not
contain any floor transition. Additionally, Track chairs also
collected specific data at five floor transition zones, i.e. the
stairs. All the trajectories were collected 4 times and in both
walking directions. Regular training data at corridors was
collected from 27 March at 13:00 until 28 March at 11:00.
Training data in floor transition zones were collected on 28
March from 11:00 to 14:00.

For the validation phase, Track chairs defined slightly
more complex trajectories. The number of key points was
also lower and Track chairs did not guarantee that every
significant turn was manually marked with a user-defined
position. Thus lines connecting intermediate points were not
representative of the trajectory done and competitors can-
not assume a rectilinear trajectory between two consecutive
points. Moreover, those trajectories could be multi-floor. The
trajectories were collected just one time in a single walking
direction. Validation data was collected on 28 March from
14:20 to 17:20.

Training data is usually used as a reference for the IPS,
whereas validation data can be used by the teams to estimate
the accuracy of the developed solution. Validation data is
also useful to select the most appropriate parameters of the

IPS if they are independent of training data. To participate
in the competition, competitors could use both data sets at
their own discretion. In fact, competitors could also use data
sets provided in previous editions or new data sets collected
in their own facilities to perform calibration and internal
validation. However, competitors could not collect additional
data in the evaluation area.

Finally, a long path covering all the evaluation area was
recorded with the app for the evaluation phase on 29 March
in the morning, resulting in a blind evaluation log file without
any reference key points, lasting more than 20 min. This data
set and supplementary materials –e.g. floor-plans– were pro-
vided to competitors for Track 3 evaluation. These contents
and the ground truth location for evaluation are now available
for further benchmarking in [29]. This package complements
the ones from the previous editions [30]–[32].

B. INDOOR POSITIONING SOLUTIONS PROVIDED BY

COMPETITORS

1) INTEL LABS Team

Intel Labs has studied a positioning technique that relies
on Wi-Fi ranging and built-in sensors of mobile devices. A
benefit of the range-based approach is that a ranging strategy
can be adaptively optimized for each indoor environment
without collecting any ground truth data. For instance, every
trainable parameter related to the ranging process can be
optimized using wireless data accumulated when users use
a positioning application [33], [34] or extra sensor data
generated inside mobile devices [35]. By doing so, the time
and effort required to deploy and calibrate positioning so-
lutions can be significantly reduced. The performance of the
range-based technique has been verified with various ranging
sources, including round trip time (RTT) measurement using
the fine timing measurement (FTM) protocol defined in the
IEEE 802.11-2016 standard [33], [34] and the channel state
information (CSI) of beacon frames [35].

One of the biggest challenges for this team to participate
in the competition was that the provided training data do not
include the coordinates of Wi-Fi access points, which are
essential for range-based positioning solutions. Even though
an automated way to acquire the coordinates of access points
was studied in [36], this technique could not be applied for
this competition as it needs to know the coordinates of a
few access points as a reference. For this reason, the Wi-Fi
fingerprinting technique was used instead of the range-based
approach.

Figure 22 illustrates the block diagram of the proposed
approach, which consists of three stages: the Wi-Fi finger-
printing, PDR, and trajectory fusion. The proposed approach
uses the Wi-Fi fingerprinting and PDR techniques to sep-
arately estimate the trajectory of the device, and fuses the
two estimated trajectories to produce precise trajectory. In
addition, the current floor is detected primarily relying on
air pressure measurements. The details of each stages are
described as follows.
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FIGURE 22. Block diagram of the proposed approach based on Wi-Fi
fingerprinting and PDR techniques.

In the Wi-Fi fingerprinting stage, the training data are
used to create a radio map for each floor using received
signal strength (RSS) measurements. For simplicity, only
RSS measurements in the 2.4 GHz frequency band were
considered. While investigating the provided training data, it
was found that some access points broadcast multiple service
set identifiers (SSIDs) at the same time. Therefore, multiple
MAC addresses that are likely to come from the same access
point were consolidated into one to avoid duplication. In
addition to RSS measurements, the training/test data also
provide GNSS coordinates of the device. Therefore, these
data were partially used when the Wi-Fi fingerprinting tech-
nique can not provide precise position estimates, for instance,
if there are only few access points available.

In the PDR stage, the orientation of the device is es-
timated using accelerometer and gyroscope readings. The
magnetometer was rarely used in this competition due to
the distortion of the magnetic field. Using the estimated
orientation of the device, the local accelerometer readings
can be transformed relative to the reference coordinates sys-
tem. Among the transformed values, the z-axis component
is used to estimate the traveled distance of the device by
capturing the vertical movement pattern of the device, which
is generated when the user walks. In addition, the heading
direction of the device is also obtained from the estimated
orientation of the device, and thus, the trajectory of the device
is obtained by combining the traveled distance and heading
direction. The details of the PDR technique are introduced
in [34].

Finally, the fusion stage combines the two separately esti-
mated trajectories to produce an accurate trajectory. Because
heading estimation is the most critical factor that impacts
the accuracy of the PDR technique, this stage periodically
corrects the heading direction using the fingerprinting results.
One problem is that there is a delay of a few seconds between
the Wi-Fi and sensor measurements. When performing a Wi-
Fi scan operation, the Android system typically allocates
100 ms for each Wi-Fi channel and reports the scan results
after finishing the entire scan procedure. Therefore, the scan
results for the 2.4 GHz band, which are used at the Wi-
Fi fingerprinting stage, are actually 3–4 seconds delayed

information as the Android system scans around 30 Wi-
Fi channels in the 5 GHz band. Such delays were carefully
corrected in the fusion stage.

2) Naver Labs Europe Team

Our objective is to obtain a reliable prediction of the tra-
jectory of a user from the data collected by his/her smart-
phone, using inertial sensors such as the accelerometer and
the gyroscope, as well as other type of sensors such as
barometer and Wi-Fi scanner. Our system is based on four
main components:

• A deep learning-based pedestrian dead reckoning (deep
PDR) model that provides a high-rate estimation of the
relative position of the user.

• An indoor location system based on Wi-Fi fingerprint-
ing that provides a prediction of the user’s absolute
position each time a Wi-Fi scan is received.

• A fusion of the two above-mentioned predictions using
a Kalman filter. The output of this component is a new
estimation of the user’s global position.

• A structural projection method that takes into account
the physical constraints of the environment (corridors,
doors, etc.) and projects the prediction from the Kalman
filter on the possible paths.

FIGURE 23. Feature extraction for deep PDR.

a: Deep PDR

Classical PDR techniques infer speed of a user through
steps detection, extracted typically from accelerometer and
orientation sensors, and an approximation of the user’s step
length. The error of the PDR estimations is usually caused by
both heading and step length error. The stride of the user does
not have to be constant and depends, among other factors, on
the physical characteristics of the user.
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Deep learning finds features and classification boundaries
through optimizing a certain loss function, employing a deep
neural network architecture. Convolutional neural networks
(CNNs) have achieved state-of-the-art results in image recog-
nition tasks, where the nearby pixels typically have strong
relationships with each other. Stacked convolutional and
pooling layers act as a hierarchical feature extractor.

Although CNNs have been mostly used for computer
vision tasks, we believe they can efficiently capture local
temporal dependencies of motion signals and should be
able to identify multi-modal correlations among sensors. In
multimodal approaches, where many sensors are used to
characterise a movement, correlations among distinct type of
sensors may also have an impact on the correct interpretation
of data. CNNs can exploit the local dependency character-
istics inherent to time-series sensor data and the translation
invariant nature of movement.

A temporal window of inertial sensor data can be associ-
ated to its corresponding change in the user’s position. Tem-
poral and multimodal correlations present in the sensory data
can be learned using a supervised deep learning approach to
predict the associated displacement, training a deep neural
network to predict the relative change of position associated
to a series of sensor data represented by a sliding window
over the accelerometer, gyroscope and orientation readings
(see figure 23). Using this approach, the inertial sensors’
readings are used to predict short term displacements of the
user. Gyroscope measurements allow us to detect changes
in orientation and can also be used to filter heading to get
a smoother trajectory.

All the data contained in the training and validation sets are
used to train the deep learning model that will be responsible
for predicting the user’s trajectory based on the inertial sensor
data, replacing the classic PDR method.

b: Wi-Fi: predictions with k-NN
To obtain an absolute position reference, we build a radio
map using available Wi-Fi RSS data. We interpolate the
position at which a fingerprint is received, assuming the user
is moving at a constant pace, and using accelerometer data
to detect static and movement intervals. Once the radio map
is built, the user position can be predicted using classical
machine learning algorithms such as k-NN or SVR.

c: Kalman filter for fusion
The observations of the user state obtained through the pre-
vious methods are integrated using a Kalman filter (KF). The
KF output provides reliable estimates of the user’s position
based on a sequence of inaccurate inputs. The filter outputs
the corrected path using absolute position estimations from
the Wi-Fi positioning system and the relative estimations
from the deep PDR model.

d: Structural projection
The KF does not take into account physical constraints im-
posed by the floor layout. Meanwhile, the predicted trajectory

can not go through walls, changes of floor can only occur at
stairs, etc. Therefore, we proposed a method that adjusts the
KF output and projects it in the accessible paths only, these
paths are extracted from the training and validation data.

3) IOT2US Team
The processing workflow has four main steps. 1) Floor
level determination. 2) Motion pattern detection and sub-
trajectories segmentation 3) Sub-trajectory reconstruction
and track optimisation. 4) Track result re-sampling. Time
series data from seven types of smartphone sensor were fused
to reconstruct the track; each step only making use of some of
them, as shown in figure 24. Additionally, map information
was matched to the tracks for optimisation in step three.

FIGURE 24. Smartphone Sensor Data Fusion.

a: Step 1
In the first step, the determination of the floor level is
based on the PRES data from the barometer and Wi-Fi data
collected from known Wi-Fi APs. The process does not
require complicated online matching but simply makes use
of existing MAC address list to determine the floor ID level
and stairs ID [37]. However, since the Wi-Fi data is collected
with a frequency of approximately 0.25 Hz, it cannot provide
enough time resolution to determine the precise start and end
points of transitions between floors. Therefore, PRES data,
which was collected at a higher frequency of 5 Hz was used to
detect the up or down stair motion. A Gaussian filter was used
to smooth the data before calculating the gradient of motion.
Then, the start and end of the transition between floors can
be clearly identified. Training data set was used to tune
the parameters in this process. Also, Wi-Fi data matching
the training data set of floor transitions can determine the
coordinates of the transition location.

b: Step 2
In step two, different motion modes can be detected using
machine learning or deep learning algorithms operating on
the multi-sensor data. Six categories of motion were defined:
walking, turning, stationary, ascending (stairs), descending
(stairs) and irregular movement. Our processing workflow
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included data segmentation, labelling, feature extraction and
classification. We made use of accelerator, gyroscope, mag-
netic field, AHRS and pressure data for motion mode clas-
sification. Some recognizable statistical characteristics (e.g.
mean, maximum, derivative) of these time series in the time-
domain are extracted as features. Decision tree and support
vector machine (SVM) were investigated to classify these
motion modes.

Turning points and walking episodes are combined to
segment the trajectory in time while the location of the seg-
mented sub-trajectory is determined by Wi-Fi fingerprinting
algorithms. Note that due to the low data collection frequency
of Wi-Fi, we do not use the Wi-Fi data to estimate the
trajectory but use it to match the sub-trajectory with the Wi-
Fi fingerprint database to find an approximate location. The
positions of reference points provided in the training data
set is also recorded as important known knowledge for the
following step.

c: Step 3
In this step, a PDR algorithm is applied to reconstruct the
detailed segmented trajectory coordinates with time stamps.
Also, all the parameters required by the PDR were deter-
mined in step two where we identified the step length, step
detection threshold, etc. Moreover, known knowledge of
the map can also be used for trajectory optimisation. Since
each segmented sub-trajectory can be matched to a known
position, then the start and end points of each sub-trajectory
can be used for the optimisation of the trajectories estimated
by PDR.

A special case occurs when the GNSS data is also avail-
able, where there is a strong possibility that the trajectory is
outdoors in an open space. In this case, the map information
is not sufficient to support the trajectory optimisation as there
is no clear corridor or room structure restriction. Hence, we
used a fusion of the PDR and GNSS methods to optimise the
sub-trajectories. A Kalman filter was applied in this process
in which we take the PDR results as the observation model
and the GNSS results as the execution model.

After the sub-trajectory reconstruction process, the opti-
misation work is mainly focused on the heading estimation
adjustment. As in most cases of turning motion, it happens at
corridor corner where we already knew the coordinates and
angle of it. Then the deviation of heading which estimated
from AHRS data can be corrected with map matching.

d: Step 4
In the final step, all optimised sub-trajectories are concate-
nated chronologically. Due to adjustments applied in step
three, the coordinates of the end point of one sub-trajectory
and coordinates of the start of the following sub-trajectory
may have a gap or an overlap. We let the track data re-
sampling smooth these gaps and also generated the final
answer in the required time slot (0.5 s). The resampling
process is illustrated in figure 24, where tn is the time slot we
want and pn is each tn corresponding position (coordinates),

which are the results calculated in the previous steps. τn and
ρn are corresponding time points and positions which are the
desired results in the desired time slots. k is the number of
sampling points between two t points.

FIGURE 25. Re-sampling Process.

4) AraraDS Team

AraraIPS is Arara’s proprietary indoor positioning technol-
ogy. Arara is engaged in developing advanced knowledge
solutions and producing high-quality technology to address
modern business and industry challenges. AraraIPS has been
one of the central issues in our research agenda for the
last three years. It is a functional indoor positioning system
offering several commercial solutions as of today.

Our system’s approach to indoor positioning has four dis-
tinctive characteristics: it is based on a cartographic paradigm
(fingerprinting), it uses a discretisation of the predicted
floor/building, it is measurement-agnostic (i.e. its abstract
formulation is not specific to any kind of signal or measure-
ment such as Wi-Fi, magnetic field, BLE, etc.), and it exploits
measurement history. Let us have a closer look into each of
these features as we get a better feel of how AraraIPS works.

Fingerprinting has become a relevant technique in indoor
positioning approaches. The reason is that alternative, range-
based techniques are based upon trilateration or triangulation,
in which sufficient geometric information (with respect to
reference landmarks) singles out the position of the object to
be located. These methods are based on underlying hypothe-
ses (e.g. clear line of sight between object and reference land-
mark is needed to establish a functional one-to-one relation
between distance and signal intensity) which usually do not
hold in the dynamic, cluttered context of indoor spaces.

Our system also relies on the discretisation of the under-
lying indoor space. In practice, this means that a graph is
built from the map of a venue, in which nodes are possi-
ble locations where the tracked device can be found and
edges connect neighboring nodes. This effectively turns the
positioning problem into a classification one, in which the
prediction is one of finitely many possible locations. It has
the further advantage of ruling out inaccessible locations
(e.g. walls) and thus not complicating the prediction task
unnecessarily.

The final ingredient in our system is to enrich the in-
formation available to the prediction module by taking into
account the history of measurements, exploiting the fact that
measurements taken close in time will be strongly correlated.
Thus, we expect the prediction to narrow in on the true
position with greater and greater confidence as time goes
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FIGURE 26. Sample portion of the graph representing the venue.

by. The mathematical formulation of this idea is that of a
random walk on the graph of the venue, in which transition
probabilities at a given instant in time depend on the measure-
ments taken at that particular time. This dependence is made
precise by our underlying measurement and node transition
probabilistic models, which we choose not to disclose.

5) UMinho Team
The UMinho team adopted a two-phases approach based on
a combination of Wi-Fi fingerprinting with data from other
sensors. In the first phase, a radio map was built using the
Training data sets. In the second phase, the Evaluation tra-
jectory was estimated by fusing position estimates obtained
from Wi-Fi fingerprinting with data from other sensors, as
described below. Validation data sets were used to evaluate
the performance before the competition.

a: Building the Wi-Fi radio map
The provided Training and Validation data sets are similar
in the sense that they both include similar data from the
sensors and also some ground truth points (POSI records).
Additionally, Training data is described as representing a set
of trajectories where the path between consecutive ground
truth points is along a straight line, except for those collected
while using stairs. Since Wi-Fi samples do not include the
position where they have been collected, those positions must
be estimated. The solution to this problem was based on
estimating the trajectory between consecutive ground truth
points using PDR (module 1, figure 27). Step Detection
(SD) and Step Length (SL) estimation were performed by
processing data from the accelerometer (ACCE records). For
the Regular Training data sets, a straight line was assumed
between consecutive ground truth point, thus defining the
heading. For the Validation data sets, the trajectories between
consecutive ground truth points were estimated using SD and
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FIGURE 27. Overview of the adopted approach.

FIGURE 28. Estimating the trajectory between consecutive ground truth
points: heading and step length were adjusted between any two POSI records.

SL estimations, and the heading (yaw) included in the AHRS
records. In both cases, the heading and SL estimates were
adjusted so that the estimated trajectory matched the ground
truth points, as illustrated in figure 28.

Wi-Fi samples were then assigned a position along the
estimated trajectories through linear interpolation using the
sensor timestamps. A floor and z coordinate were assigned to
each Wi-Fi sample using POSI data and by processing data
from the pressure sensors (PRES) (module 2).

b: Estimating the final trajectory

Figure 27 provides an overview of the system used to esti-
mate the final trajectory from the Evaluation dataset.

As in the first phase, ACCE data was used for SD and
SL estimation that, together with heading information from
the AHRS records, were used to estimate an initial trajectory
using PDR (module 3). Of particular interest is the displace-
ment between consecutive steps.

Each Wi-Fi sample was then assigned a floor and z coordi-
nate estimates using fingerprinting (k-NN) and pressure data
(module 4). Pressure data was particularly useful to estimate
the z coordinate while changing floors, while fingerprinting
is more robust in estimating the absolute floor.

A variation of the FastGraph Enhanced algorithm [38]
was then used to estimate the position of each Wi-Fi sample
(module 5). In this version, the graph was initialised using
the radio map built in the first phase, instead of using data
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Validation Set Mean Error [m] Median Error [m] 75th perc. [m] 90th perc. [m]

v01 4.0 4.0 5.5 6.7
v02 2.8 3.2 3.5 3.9
v03 2.6 2.3 3.6 4.6
v04 3.2 2.2 4.1 7.3
v05 4.3 3.8 4.9 7.5
v06 4.4 3.4 4.3 9.9
v07 2.9 2.7 3.8 4.2
v08 3.4 2.4 4.3 7.5
v09 2.3 1.9 3.6 4.5

all (mean) 3.3 2.9 4.2 6.2

TABLE 3. Validation Results (meters).

from fixed Anchors. Then, each new Wi-Fi sample (Evalu-
ation) was added to the graph using the constraints defined
by the floor and z coordinates estimated in module 4, and
displacement information estimated in module 3. The GNSS
observations with higher accuracy were integrated into the
graph as additional nodes, adding new constraints. These
were important to estimate the initial and final positions of
the trajectory, as well as other parts of the trajectory that took
place outdoors. The final trajectory was built, and represented
in the required format, through linear interpolation using the
timestamps of the Wi-Fi and GNSS records.

c: Pre-competition evaluation

Before the competition, the developed solution was evaluated
using only Training data to build the radio map and by plot-
ting the trajectories estimated for each one of the Validation
paths. The error was evaluated by measuring the positioning
error at the provided ground truth points (POSI records in
the Validation datasets). This evaluation revealed that the
main errors were observed in parts of the trajectory where
there is a significant disturbance in the heading information
obtained from the AHRS records. A summary of the obtained
results for each Validation trajectory is shown in table 3.
Floor estimation was 100% correct for all data sets.

d: Post-competition evaluation

The third quartile of the position error metric achieved by
the UMinho team was of 3.0 m (mean error of 2.4 m). This
result is much better than those obtained for the Validation
data. However, it must be noted that Validation performance
analysis was done using just a few ground truth points
(the POSI records) that were typically placed at the end of
corridors, and not along with them. An evaluation of the
adopted solution was performed after the competition using
the ground truth data provided by the competition organisers.
As before, the larger errors were found to be associated
with the disturbances observed in the AHRS data (heading),
suggesting that further work is needed to improve heading
estimation.

6) UGent Team
The core of our location tracking system is a route mapping
filter [39] that is based on a motion model and the Viterbi
principle, a technique related to Hidden Markov Models
and backward belief propagation. The physical layout of a
building is used to construct the most likely path instead of a
sequence of independent, instantaneous estimates. This post-
processing filter ensures physically realistic trajectories and
has been shown by independent researchers to outperform
traditional approaches such as smoothing particle filters [40].
During initialisation, the route mapping filter starts with
N paths (e.g., 1000 starting points) that are located in a
circle around the best first estimation given the first Wi-
Fi measurements and an RSS fingerprint map based on the
training data [39]. These N paths are updated each time new
Wi-Fi measurements become available. The next candidate
positions, starting from the current last points of the paths
in memory, are determined based on a maximum walking
speed (derived from a step counting algorithm using the
available accelerometer data), and the walls and obstacles of
the building (people cannot move through walls). Each path
consists of a chain of grid points and a cost that indicates
the probability of this path at this time step. The path with
the lowest cost after processing all sensor data is the most
likely trajectory. The cost of a path is the sum of costs based
on various sensor measurements: Wi-Fi RSS measurements,
magnetometer, barometer, accelerometer and gyroscope data.

Wi-Fi: the RSS values are compared to the corresponding
reference values in a RSS fingerprint map and are weighed
based on the estimated distance to the Wi-Fi access points.
The fingerprint map itself is based on all training data,
grouped per BSSID and per grid point.

Magnetometer: the magnetic field values are compared
with the corresponding reference values in a magnetic finger-
print map. The fingerprint map itself is based on all training
data, grouped per grid point and orientation. The closest
neighbor is used when a path visits a grid point without any
reference measurements (both for Wi-Fi and magnetometer).

Barometer: the differences between the average pressure
over a short (5 s) and a long window (30 s) are used to
detect up or down floor changes when the difference exceeds
a certain threshold based on the training data. Furthermore, a
cooling-off period is implemented to avoid changing floors
multiple times within a short time span. Paths that do no
change their current floor in the right direction (by taking the
escalator or lift) get an additional cost assigned, e.g., 15 m.

Accelerometer, gyroscope, and mobile phone 3D orien-
tation: these data are fused together and used to detect
the step count, stride length and orientation between two
locations updates; combination of these three gives us the
traveled distance and direction. The difference between this
traveled distance and direction, and the distance and direction
between a grid point and his parent grid point (i.e., the
previous grid point of the path) are used as an additional cost.
This penalties paths that move when the accelerometer and
gyroscope estimate that the user is standing still and the other
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way around when a path remains static and the user is moving
or when a path takes a turn in the opposite direction.

The physical layout of the building is modeled by a
shapefile, constructed with QGIS, the PDF maps with geo-
referenced points, and a plugin to reference the raster to
the projected coordinate system by creating a GeoTIFF file.
Each floor is represented by a polygon with the floor id
as a feature value and likewise, the escalator and lift are
represented by a polygon with the start and end floor as a
feature value. The route mapping filter uses this shapefile as
input to construct a grid database with a certain grid size, e.g.,
1 m, and a reachable database, consisting of the reachable
grid points, for each grid point. The reachable grid points
are the neighboring grid points that do not cross walls or
obstacles, and the above or below grid points if it is located
within the polygon of an escalator or lift (and correct floor
level). This grid and reachable database are used to select the
next candidate positions in the route mapping filter, given the
current last points of the paths in memory and the time that
has passed since the last location update.

a: Lessons learned

We assigned too much weight to the Wi-Fi and magnetic
measurements in the cost function of our algorithm. This
caused the reconstructions to be mapped to areas for which
RSS and magnetic training data were available, which is
disadvantageous for an evaluation that contains previously
unvisited places. It would be better to assign more weight
or make a switch to a pedestrian dead reckoning technique
when the best matches between measurements and the fin-
gerprint databases become too large. The competition is a
well-organised event and a useful contribution for the indoor
positioning and tracking community.

7) INDORA Team

The main goal for the participation in the off-site competi-
tion Track was to evaluate the same localisation method as
used for various experiments and on-site competitions (e.g.,
IPIN 2018 competition [9]). Multiple system configurations
were chosen to produce position estimations. However, no
postprocessing or any changes to the output were applied.
The expectation was that the off-site results would show
the real performance of proposed methods. Another goal is
to overcome implementation problems and find the system
configuration such that the live positioning error would be at
the same level as this value.

a: Positioning method overview

The method is the same as that used in Track 1 on-site
competition described in section IV-B5.

For the off-site competition, the measurements file was
split using floor detection method and the location estima-
tions were calculated separately for every floor. The initial
location for the ground floor was determined from GNSS
measurements. Initial positions for every following floor

FIGURE 29. A step performed from the red point to the blue point on the left
figure. The source position for the next step is labeled with the green point.
The distance between the blue and the green point increases the localisation
score. Centroid grid-based approach introduces another grid layer and
reduces the error in such situations by choosing the estimated positions from a
set of points on the fine grid.

were chosen from a list of possible places, i.e., lift doors or
entrances to staircases.

The absence of ground truth positions requires alternative
methods to evaluate the estimated path. Visual analysis of the
path supported by some statistical values for the estimations
may be used to rank the positioning attempt. Visualization of
detected steps with proper directions provides an insight into
the real path covered by the measurements. Comparison of
such visualizations on the map with different configurations
allows to determine the expected step length and transition
locations between floors.

b: Centroid grid-based Bayesian filtering

The component with the main research focus of the intro-
duced localisation system is the grid-based implementation
of Bayesian filtering [22]. Unlike widely used Particle filter,
the grid-based approach is deterministic. The full map is
covered by the grid and the belief value is calculated for
every grid cell. One of the main drawbacks of such solution is
the computational complexity. Any grid-based method used
for real time localisation should define a low-dimensional
state with convenient grid cell size. In this approach, only
two-dimensional position is represented by a single grid cell.
The selected cell size defines the precision of the estimation.
Therefore, it is not possible to increase the resolution dynam-
ically and focus only on areas with high belief values.

The overall localisation score is influenced by the sensor
measurements quality, the system configuration and a few
other factors. In this case, the discretisation of the space may
increase the error (see figure 29). The proposed approach
introduces a centroid grid-based filtering method based on
two layers of grids. The coarse grid is identical to the original
approach representing belief values as probabilities of the
current position to be within the corresponding grid cell.
Another fine layer is used to determine the estimated position
which is selected from a set of fine grid cell centers. All
components including precomputed convolution masks are
adjusted to include all possible combinations of source and
target positions defined by a single step.
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c: Results analysis
The overall performance suffers from incorrect initial posi-
tion based on GNSS measurements. The building structure
with narrow corridors and 90° turns supports the Bayesian
filtering in reducing the uncertainty introduced by noisy
measurements and unknown step length. However, outdoor
environment and large open areas are more challenging and
demanding on the parameter configuration. In this compe-
tition, the first 10–15 checkpoints were difficult to estimate
with less opportunities to utilise the building structure to
reduce the error. Moreover, the error was not trivial to dis-
tinguish from the path with unknown ground truth positions.
Another sensitive situation resulting in error increase was on
a balcony which was not clearly recognizable from the floor
plans. Nevertheless, floor transitions and positioning when
walking along the corridors were reliable.

8) YAI Team
The data processing flow chart of the proposed two-stage
positioning method is shown in figure 30, which is extended
from our previous work [9, YAI team, C-8, Sec. IV]. Our fin-
gerprinting method first leverages the three-axis accelerome-
ter to build a trusted known points associated with APP time.
Next, we use the sensed Wi-Fi signal data to generate a Wi-Fi
fingerprint table, which contained location information, i.e.,
longitude and latitude. Then, we compare both the Euclidean
distance and the similarity between the sensed N -tuple RSS
values and the Wi-Fi fingerprint table data to estimate the
coarse positioning results, which will be served as the input
information for the fine positioning method. Finally, we fuse
the coarse positioning results PW with the fine positioning
results PM to infer the finally positioning results.

FIGURE 30. Flowchart of the two-stage positioning method, in which step-1
generates a Wi-Fi fingerprint table and step-2 produces a magnetic field
strength table.

a: Step 1
The main purpose of Step 1 is to produce the Wi-Fi fin-
gerprints, which is used for coarse positioning. In this step,

we used the step-detection-assisted fingerprinting method [9,
YAI team, C-8, Sec. IV] to make a fingerprinting table. Then,
we compare both the Euclidean distance and the similarity
of the Wi-Fi receiving behavior metric to obtain coarse
positioning results PW .

b: Step 2

The training dataset gives the location (longitude and lati-
tude) of some known points, i.e., POSI, but these POSI points
are sparse in the space domain. First, we artificially construct
a magnetic field strength table by linear interpolation method
such that each sensed magnetic data has its corresponding
location tags. Second, we exploit the coarse positioning
results PW as the initial point and choose the data record
in the magnetic fingerprints which are within the circle with
radius of 1 m. The schematic view of cooperation between
Wi Fi positioning results and magnetic positioning results
is illustrated in figure 31. Note that we exclude all particles
outside the circle, where the blue dots are all particles that
has a sensed magnetic field value.

FIGURE 31. Schematic view of cooperation between Wi-Fi positioning results
and magnetic positioning results.

The point where similar Wi-Fi similar value obtained in the
second step is the center of the circle. We extract the position
point with the effective magnetic field value within radius
of 1 m. Note that the particles are chosen from the magnetic
fingerprinting table. First,Np particles are randomly selected
within the circle, and their weights associated with each
particle are calculated individually as follows:

w(i) =
1√
2πR

exp

{

−
Z2

i
2R

}

(9)

where w(i) represents the weight value assigned to the i-
th particle, Zi denotes the magnetic field value difference
between the magnetic field value of the testing point, whose
location is to be estimated, and the magnetic field value of
the particle pi, and R represents a pre-defined measurement
noise parameter. Note that we have chosen R = 10−11

in the simulation. After normalizing the weight values and
resampling particles, we are able to obtain a new particle
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group p(i) and calculate the center position of this group as
follows:

PM =
1

Np

Np
∑

i=1

p(i) (10)

It should be noticed that because of the magnetic field
strength value is not unique, the coarse positioning results
PW are considered to be fused with the fine positioning result
as follows:

PF = λPW + (1− λ)PM (11)

where PF is the final coordinate of the testing point. We
empirically choose λ = 0.3 in our simulation.

c: Simulation results
We use the competition files to evaluate the performance
of the proposed positioning algorithm. Using the validation
data, we obtain the resulting CDF curves of the errors in
positioning are shown in figuer 32. It can be seen that when
locating using only Wi-Fi, the third quartile of the positioning
errors is 4.2 m. After adding magnetic field positioning, the
value drops to 3.6 m, thus significantly reducing positioning
errors.
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FIGURE 32. The resulting CDF of the positioning errors, in which the purple
line indicates the positioning error using only Wi-Fi, and the blue line indicates
the expected result after adding the magnetic field.

VII. TRACK 4 - FOOT-MOUNTED IMU-BASED (OFF-SITE)
A. TRACK DESCRIPTION

The fourth Track was dedicated to foot-mounted inertial and
GNSS navigation in an off-site context. Data were collected
with the PERSY (PEdestrian Reference SYstem, see table
5) sensor developed by the GEOLOC team at University
Gustave Eiffel. Track chairs collected the data by walking
through the competition area over a 1.1 km path spanning
three different floors, using a lift and including some outdoor
parts, as shown in figure 33. Track 4 followed the same data
collection strategies of the off-site competitions organised
in previous years [9]. In contrast with all the other Tracks,

FIGURE 33. PERSY and description of Track 4 over CNR facilities.

Step Duration Description
Step1 10s hand held static phase
Step2 60s magnetometer calibration
Step3 10s hand held static phase
Step4 2min PERSY setup on the foot
Step5 60s static phase with PERSY on the foot
Step6 25min evaluation Track including key points from 1 to 68

TABLE 4. Different steps composing Dataset n°2 over CNR facilities.

where competitors were provided with a detailed map before-
hand and could make use of that information, competitors in
Track 4 could not use any map information.

Two data sets were given to competitors. Dataset n°1 was
taken on a single static location for several hours, and was
meant to be used for sensor calibration, by enabling com-
petitors to compute noise and measurement bias of inertial
sensors (Allan variance). Dataset n°2 was the data recorded
on CNR Area following 6 different steps, as shown in table 4
and in figure 34.

The competitors’ objective was to re-build the trajectory
realised by the Track chairs. The evaluation was done by

FIGURE 34. Different steps composing Dataset n°2 over CNR facilities.
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comparing 2D position and floor level estimated by each
team to the coordinates of 68 reference points (key points). To
do so, a table containing timestamps of expected key points
was shared, and competitors had to provide the correspond-
ing coordinates.

Sensor Model & Manufacturer Sampling Freq. (Hz)
Accelerometer STIM300 - Sensonor 160
Gyroscope STIM300 - Sensonor 160
Magnetometer HMC5983 - Honeywell 160
GNSS NEO-M8T - Ublox 5

TABLE 5. Information about embedded sensors inside PERSY.

Data Set and supplementary materials –e.g. datasheet of
sensors embedded in PERSY– were provided to competitors
of Track 4. These contents and the ground truth location
for evaluation are now available for further benchmarking in
[41]. This package complements the ones from the previous
editions [42].

B. INDOOR POSITIONING SOLUTIONS PROVIDED BY

COMPETITORS

1) KIU SNU Team
A disadvantage of the zero velocity update (ZUPT)-based
pedestrian dead reckoning (PDR) is that a large positioning
error occurs if the stance phase of the foot mounted with
the inertial measurement unit (IMU) is erroneously detected.
To solve this problem, we propose an accurate zero-velocity
detection method. We then use this to implement an accurate
ZUPT-based foot-mounted inertial navigation system (INS).

a: Accurate Zero-Velocity Detection
When the IMU is mounted on the foot, the PDR can be
developed in two directions, respectively. One is positioning
by step detection, stride estimation, and azimuth calculation
[43]. The other is positioning by the INS algorithm and the
error correction via ZUPT [44]. The beginning of the PDR in
the early 2000s started with the first method. However, as the
performance of MEMS-type IMU is improved recently, the
second method is widely used. Instead of ZUPT, a method
of velocity correction by calculating foot velocity has been
studied recently [45]. In this paper, PDR is developed based
on the second method, and this method is called ZUPT-based
PDR. The advantage of the ZUPT-based PDR is that it can
estimate the position of the foot regardless of the various
walking patterns of the foot. However, if the stance phase
with zero-velocity is not accurately detected for ZUPT, a
large positioning error may occur. Therefore, in this paper,
we propose a method to detect the accurate zero-velocity
through signal processing of IMU output in order to develop
stable ZUPT-based PDR. Figure 35 illustrates the key to
accurate zero-velocity detection.

Figure 35 shows that the signal processed data (Sensor-T)
is greatly simplified during the stance phase by buffering the
sensor signal and calculating the standard deviation of the
buffer. Through this signal, it is possible to accurately detect

the section of zero-velocity. Figure 36 shows an example of
the zero-velocity detection during the stance phases using
real data provided in Track 4.

b: ZUPT-based foot-mounted INS
Using the 3-axis accelerometer and gyro output of the IMU,
the navigation information of the foot attaching the IMU
can be calculated based on the INS algorithm. However,
the errors of navigation information gradually increase with
time due to the errors of the inertial sensors such as bias
repeatability, random walk, etc. Therefore, it is common to
construct an integrated navigation system that corrects the
INS errors by using an appropriate non-inertial sensors.

Additional sensor information provided by Track 4 is
GNSS-based position information and 3-axis magnetome-
ter information. The azimuth information calculated using
the magnetometer is not stable due to the influence of the
surrounding magnetic field. Therefore, in this paper, we
use the initial GNSS information to determine the initial
walking direction and correct the INS errors through the
ZUPT at the accurate zero-velocity point that can be de-
tected based on the method presented in the previous section.
Figure 37 illustrates the functional structure of the ZUPT-
based foot-mounted INS. ZUPT is designed based on an
extended Kalman filter, and state variables are set by position
error, velocity error, attitude error excluding azimuth, and
accelerometer bias. The gyro bias was excluded because
it was calibrated through the average of the gyro output
during the initial alignment process, and the azimuth was
excluded because it is not observable in ZUPT. When the
altitude change occurs through the stair walking, the floor
information is calculated by analyzing the characteristics of
the altitude information.

2) Team KIT
The KIT team used a tightly-coupled INS/GNSS sensor
data fusion approach. Zero-Velocity-Updates (ZUPTs) are
generated in the detected midstance phases of the foot by
a finite state machine based gait phase classifier [46], [47].
In contrast, horizontal ZUPTs and delta ZUPTs are applied
during stance phases using an lift. Absolute velocity mea-
surements are generated during stance phases on an escalator
[48]. If GNSS pseudo-range and Doppler measurements are
available, the kind of aiding depends on the current classified
motion state. To enable accurate position estimation in urban
scenarios an integrity check of the received GNSS data is
essential [49]. Based on the described measurements, correc-
tions of the navigation solution and the bias values of the
inertial sensors are calculated by an error-state Kalman filter.

a: Gait phase classifier
The used finite state machine based motion classifier method
is founded on bio-mechanical knowledge and medical re-
search findings of the human gait. Because the foot module is
just mounted on one foot, it is appropriate to model four basic
motion states for forward motion described in detail in [46].
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FIGURE 35. Main processing for zero-velocity detection.

FIGURE 36. An example of the zero-velocity detection.

The transitions and states representing backwards motion and
the detection of walking and running are explained in [47].

b: Lift and escalator detector

The approach is able to detect and separate lift from escalator
movements [48]. In addition, the lift and escalator rides are
subdivided in different sub-states like acceleration phase,
constant velocity phase and braking phase. The lift and
escalator detector is realised with two separate finite state

FIGURE 37. Functional structure of the ZUPT-based foot mounted INS.

machines; one for the recognition of lifts and the second for
the detection of escalators. The finite state machines have
different states and transitions to switch between the states.

c: GNSS augmentation
The precise relative positioning INS is fused with GNSS
pseudo-range and Doppler measurements for absolute posi-
tion and heading estimation. Unique is the decision depend-
ing on the classified motion state if Doppler measurements
improve the accuracy of the navigation solution. In addition,
the integrity of the GNSS signals are checked. A good
knowledge of the precise relative positioning inertial system
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AOE team is shown in Fig.1.  

 
FIGURE 1. The scheme of foot-mounted PDR system based on multi-
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FIGURE 38. The scheme of foot-mounted PDR system based on
multi-constraint algorithms.

is used to detect and exclude GNSS measurements with high
multipath errors. This is essential for robust pedestrian lo-
calisation in dense urban environments with outdoor-indoor
transitions.

3) AOE Team

The pedestrian foot-mounted PDR system proposed by AOE
team is shown in figure 38.

In the above framework, five constraint algorithms are
included in the middle modules: Stance & Still Phase De-
tection, the HDE, the HUPT, the ZUPT, and the Earth Mag-
netic Yaw. Meanwhile, the Stance and Still Phase Detection
includes two components: the GLRT detector algorithm used
under the condition of the slow and normal pedestrian gait
speed, and the HMM detector algorithm used under the
condition of the dynamic and fast pedestrian gait speed. After
that, using the improved HDE and HUPT method to estimate
current position errors, ZUPT is used to estimate the velocity
error, while Earth Magnetic Yaw based on QSF method is
used to estimate the heading error.

a: The Multi-Constraint algorithms

A gait or a walk cycle consists of two phases: the swing and
stance phase. In the swing phase, the foot is not in contact
with the ground. In contrast, the foot contacts the ground in
the stance phase. GLRT algorithm has obvious advantages
for zero speed detection of stable pedestrian gait velocity,
while HMM algorithm has a good effect for zero speed
detection of dynamic and fast pedestrian gait speed. Thus,
the two methods are combined to achieve the dynamic human
stance and still phase detection [50].

When the Stance and Still Phase Detection detects the
stance and swing phases of human foot gait from IMU’s data,
ZUPT method is used to constraint the velocity divergence
[51].
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HDE algorithm is a very useful method to constraint the
system’s heading drift, if the indoor reference heading can be
known in advance. In our method, we used the initial heading
to calculate several possible reference directions of pedes-
trian walking [52]. Then, unlike the existing HDE method,
which mainly corrects inertia recursive heading, we use the
closest reference direction to calculate the estimate position
at the current footstep, then uses the position error between
the estimate position and the inertia recursive position to
restrain the position divergence. The procedure is shown in
figure 39.

Height divergence is a major problem in INS-based foot-
mounted PDR system in multi-story positioning. If pedes-
trian walking on a plane, the slope of the current stride is
approximately zero degree, if that, keep the height always
unchanged. While walking on a staircase, as shown in figure
40, we proposed to use the actual slope of the stairs (usually
20–45°) to calculate the height change of the current stride,
which can be used to constrain the height divergence of the
current stride [52]. If pedestrian is on an lift or escalator,
it mainly can be effectively determined by analyzing the
characteristics of acceleration, especially the acceleration in
the vertical direction.

The magnetic field is very useful to estimate the heading
of the system, but the magnetic disturbance has a severe
effect on the estimation. In our method, an improved QSF
method combined with a compass filter is used to estimate
the heading in the perturbed magnetic field [53]. In addition,
in areas where pedestrians repeatedly walk, we use a series
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of magnetic sequence information for pedestrian trajectory
matching to improve the effect of heading constraint.

VIII. DISCUSSION AND LESSONS LEARNT
A. DISCUSSION

Most teams competing in the on-site challenges performed a
comprehensive survey of the competition area the day before
the competition. As in previous editions, paths were not
disclosed until the start of the trials, which forced competitors
to survey a rather large area in a short time.

In Track 1 we see three teams scoring under 15 m, with
the best one at 3.8 m. The competition area was a chal-
lenging scenario for smartphone-based systems mainly due
to a mix of corridors where PDR techniques can give their
best, and wide and open areas where Wi-Fi based evaluation
can represent the best option to detect the device’s position.
Only robust systems able to effectively fuse multiple sources
of information could show good performance. The winner
and the runner-up of Track 1 have shown very notable re-
sults. In particular, the winner team, SNU-NESL, reached a
remarkable score of 3.8 m and their accuracy exhibited an
impressive 95th percentile of 7.3 m. It is worth noting how
the 95th percentile can be considered a metric for systems
which approach the market and, generally, research-grade
systems show bigger errors than the results reached by the
2019 winner. As described in section IV, competitors have
developed algorithms which consider all the available sensors
(inertial, magnetic, barometric, Wi-Fi). The differences in
terms of final score are related mainly to the different weights
that competitors gave to the real-time sensor readings, the
off-line fingerprint database and the algorithm for evaluating
the user orientation and step length.

In Track 2 we again see three scores under 15 m, with the
best one at 3.6 m. As discussed in section V, the competition
area was quite challenging for vision-based systems due to
several aspects. The experience of the vision-based competi-
tions in 2018 and 2019 highlights that survey time constraints
were critical in achieving good results. The winner team,
HANA Micron, has shown the best accuracy among on-site
competition teams. HANA Micron adopted object detection
as a way of error correction, which demonstrated to be quite a
smart approach in terms of saving survey time and processing
time. The other three teams suffered from having to survey-
ing and mapping the whole competition area within only
9–10 hours, which was the main reason for the incomplete
results of the Kyushu University team. Baseline technologies
were similar across teams; the differences in scores were
mainly due to proficiency in dealing with exceptions.

In Track 3 12 teams scored under 7 m, with the best one
at 2.3 m. In contrast with the on-site Track 1, which is also
based on smartphone only, in Track 3, which is off-site,
the reference data is provided to competitors in advance.
Competitors had some weeks to process the pre-collected
data and, therefore, the positioning results are better. All the
methods providing an accuracy score below 3 m applied sen-
sor fusion to provide positioning, involving a Kalman filter

most of the time. Deep PDR and Fastgraph [38] techniques,
context and activity information seem to be promising at
different stages. It is interesting to note that none of the
competitors ensembled different approaches to minimise the
positioning error. However, ensembling the estimations pro-
vided by the winner and the runner-up (sample data provided
in [29]) would have ended in the best overall score for Track
3.

In Track 4 three teams scored under 4 m, with the best one
at 1.6 m. This year, similarly to the previous edition, maps
were not allowed to help computation of the final position.
Competitors had to analyze motion (acceleration, rate of turn)
very carefully in order to correctly detect the positions of the
reference points. Common ZUPT methods coupled to strap-
down integration have been used by competitors in order to
rebuild trajectory by a double integration of accelerometer.
Best teams had to use additional sensors like magnetometer
and GNSS signal to initiate and keep a proper heading, which
is a crucial point in the dead reckoning process. Among
reasons for score difference are the perfect estimation of floor
levels and the use of up-to-date techniques of ZUPT (KIU
SNU), GNSS doppler and pseudoranges (KIT) and QSF for
magnetometer (AOE).

B. LESSONS LEARNED BY COMPETITORS

This section is based on feedback from competitors, edited as
a summary of observations. In general, competitors appreci-
ated participating in the competition. The most cited reasons
were the opportunity to meet other teams who were working
on very similar topics, the chance to discuss their ideas and
get inspiration and also the possibility of creating collabora-
tion liaisons. They appreciated the well-staffed organisation
of the competition and the attention to details and provided
some suggestions for improvement.

Here is a summary of the main lessons learned in the
competitors’ view.

• Competitors had the opportunity of integrating and test-
ing their indoor positioning systems with limited time
available in a realistic setting on a scale much larger than
what is usual in a laboratory. These challenges, together
with having to deal with a path with standby delays,
providing real-time estimates and using commercial off-
the-shelf hardware allowed to pinpoint weaknesses in
the systems.

• Some competitors argued that the competition revealed
that fingerprinting, especially Wi-Fi fingerprinting, is
not a viable solution to future indoor localisation tech-
nology. With the advent of 5G, the cellular signal holds
much promise for more precise indoor positioning.

• Track 2 competitors realised that the tracking camera is
very sensitive to changes in light strength. Few events
where major tracking errors were recorded while mov-
ing from indoors to outdoors on a sunny day had a huge
impact on the final score.
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• Some teams successfully profited from deep learning
techniques and see a prospect of more widespread adop-
tion in indoor positioning in the near future.

• There is some controversy about how an ideal evaluation
should start. Currently, the initial position is provided to
competitors at the beginning of the competition. Devel-
opers of pure PDR-based solutions feel that initial head-
ing must be provided too, whereas competitors dealing
with multiple sources of data (sensor fusion) stress the
necessity of being autonomous to deal with the case
when the user suddenly requests location information.
Efforts are needed to reduce the importance of getting
the initial position and heading from an external source.

• Most competitors share the idea that combining multi-
ple complementary technologies is the future of indoor
positioning. Some are considering the inclusion of the
light sensor to improve system accuracy.

• Independent evaluation has been an incentive for all.
For many competitors, it is a badge to have their indoor
positioning solution externally evaluated with a rigorous
procedure under realistic and challenging conditions
such as having just one day for on-site calibration.

IX. CONCLUSIONS
The IPIN Competition series is the most important showcase
of worldwide indoor localisation technology. Since 2014,
it has compared the performance of personal localisation
systems in real-time using the rigorous EvAAL framework.
Every year, the IPIN competition has published the results
obtained by academic and industrial competitors who put
their systems to test in challenging environments with real-
istic procedures on a level field.

Because of the pandemic, 2020 is the first year since the
IPIN Competition inception that on-site competition will be
withheld, but the off-site Tracks, which were launched in
2015, will be held as usual, and increasing in number from
three to five.

Of the 25 teams competing in 2019 in Tracks 1–4, 19
accepted to contribute to this paper and concisely described
their working system for on-site Tracks 1 and 2 or their
algorithm for off-site Tracks 3 and 4. This collection is
arguably the best description we can get today of state of
the art in personal indoor localisation systems, both at the
prototypical and the algorithmic level.

The variety of methods and the lessons learned exposed
by the participants in the IPIN 2019 Competition show how
much this field is bubbling with activity, and why we have not
yet got a universal indoor localisation system that works in a
general and cheap way as GNSS works outdoors. Indeed, the
main problem is that while outdoors we can almost always
see the sky (from a radio wave perspective), we don’t have
any instance of a single source of information indoors. Add
to this that the accuracy that is needed indoors is generally
higher than the one needed outdoors, and that 2D is good
enough outdoors, but one needs at least 2.5D indoors. The
IPIN competition helps us understand why, after at least ten

years of research on personal indoor localisation, only now
we are starting to get a glimpse of a generic solution, which
is not there yet.

There is at least one more takeaway to the IPIN Compe-
tition. It is the striking difference, which could be observed
since the first competition and has been consistent since then,
between the accuracy performance claimed by essentially
all the literature on one hand, and the one we are able to
measure on the other hand. This is true both for the on-
site and the off-site Tracks. In 2019 we observed a record-
breaking third quartile accuracy of 3.8 m and 3.6 m in the
on-site Tracks, and 2.3 m and 1.7 m in the off-site Tracks.
However, it is not uncommon to read papers claiming sub-
meter accuracy. The reason is not bad science or wrong
measurement procedures. Rather, the reason is that the vast
majority of researchers cannot afford to set up a rigorous
external measurement procedure as described by the EvAAL
framework and implemented during the IPIN competitions.

The IPIN competitions have played an essential role in the
academic and industrial research on indoor localisation and
seamless location-based services, which are enablers for an
enormous market that will develop in the near future. They
are going to play it for the foreseeable future as well.
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students, and co-authored more than fifty peer-reviewed papers. Current
research interests concern network technologies and protocols, routing in
IP networks, networks simulation and indoor positioning.

CRISTIANO PENDÃO is an Invited Professor at
the School of Engineering, University of Minho,
and has been working as a researcher at the Al-
goritmi Research Centre. He received the MSc
in Telecommunications and Informatics Engineer-
ing in 2012 from the University of Minho, Por-
tugal and the Ph.D. degree in Telecommunica-
tions (MAP-tele) from the Universities of Minho,
Aveiro and Porto in 2019. His research interests
are in mobile computing, smart devices and in-

door/ outdoor positioning systems. Cristiano has also been responsible for
the development of mobile applications, for iOS and Android, in the context
of research and commercial projects.

IVO SILVA is a researcher at Algoritmi Research
Centre and an Invited Assistant Professor at Uni-
versity of Minho, Portugal. He obtained the MsC
degree in Telecommunications and Informatics
Engineering in 2016 from University of Minho.
Currently, he is developing his PhD thesis with a
focus on indoor positioning of industrial vehicles
based on Wi-Fi. His research interests are indoor
positioning, mobile computing and smart devices.

FILIPE MENESES is an Invited Assistant Pro-
fessor at the University of Minho in Portugal,
where he is a member of the Urban Informatics
research group of the Algoritmi Research Center.
His research interests include indoor positioning
and indoor navigation, Urban and mobile com-
puting and Analysis of human space movement.
He has participated in several research projects
funded by national programs, European programs
(FP7 and H2020) and directly contracted by the

industry. He has published his research results in different conferences and
journal in the area. He as served as a member of the Technical Program
Committee of several international conferences and journals. He has also
co-organized several international conferences locally.

ANTONIO COSTA PhD, is an Assistant Pro-
fessor at Department of Informatics, University
of Minho, Portugal, where he develops teaching
and research activities in the fields of Computer
Networks and Computer Communications since
1992. As a researcher, he currently integrates the
Computer Communications and Networks (CCN)
research group, at Centro Algoritmi, School of
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