
GaliLEO
A SIMULATION TOOL FOR TRAFFIC ON LEO SATELLITE

CONSTELLATIONS

PRESENTATION OF THE ARCHITECTURE

Nedo Celandroni
(*)

, Erina Ferro
(*)

, Francesco Potorti’
(*)

, Laurent Franck
(+)

(*)

Aff ili ation: CNUCE/Institute on National Research Council (C.N.R.), Pisa, Italy
tel.: +39-050-593-207/-312/-203; fax.:+39-050-904052
E_mail: { n.celandroni, e.ferro, f.potorti} @cnuce.cnr.it

(+)
Aff ili ation: ULB, Computer Science Department, Brussel, Belgium

tel.: +32-2-6505592; fax.:+32-2-6505609
E_mail: l franck@ulb.ac.be

ABSTRACT
The aim of this work is to create a tool that can
simulate the transmission of both connection-
oriented and connection-less traff ic over a
constellation of LEO/MEO (Low Earth Orbit/
Medium Earth Orbit) satellit es. We hope to provide
a performance evaluation of various constellation
access techniques and routing policies. The
simulator, named GaliLEO, will be written in Java
and will i ntegrate results from another simulator
(CONSIM from CSELT, I) to study the impact of
faults in system performance.
GaliLEO should eventually become the simulation
tool for the Cost253 action, thus providing a
common tool for all studies taking place in the
action. At the time of writing, considerable interest
is being shown in GaliLEO.

INTRODUCTION
The initial design of the GaliLEO architecture was
the outcome of a collaboration between two
institutes where researchers had already had
experiences in developing simulators. GaliLEO is
the result of separate experiences carried out on two
different simulators, LeoSim and SimToc. These
two tools did not include all the issues we wanted to
study. Moreover, other tools on the market only
study some particular aspects of the transmissions
on the LEO satellit e constellations, or are simply
too costly to maintain. Hence, the creation of
GaliLEO which aims to develop a general purpose
and customisable tool, freely available for the
academic world.

LeoSim, one of GaliLEO’s ancestors, is an event-
driven, continuous time simulator written in Java
and developed by ULB (B) in order to study a
specific topic: link state routing algorithms in LEO
satellit e constellations. It relies on object-oriented
techniques in order to be easily adapted to various
routing algorithms. LeoSim provides statistics on
the number of call requests, the call block
probabilit y, and the cost introduced by maintaining

the link state database. LeoSim is still under
development; however there is already a working
version which supports static constellations and
basic inter satellit e link (ISL) routing algorithms.
LeoSim also includes a user graphical interface.
Dynamic constellations, handover management and
elaborate end-to-end routing algorithms are to be
implemented in the near future. Its design approach,
as well as the simulation engine, has been
transported into GaliLEO.
SimToc, the other ancestor, was more relevant to
the ground station and to the up-down link (UDL)
between the ground station and a satellit e of the
constellation; however its architecture is no longer
being developed and all the efforts are now on
GaliLEO.
Another simulator, CONSIM(1) developed at
CSELT (I) for performance evaluations of satellit e
constellations affected by sudden partial failures,
will be integrated “by results” into GaliLEO.
Integration by results means that the two simulators
are kept separate, and the results of one program are
utili sed by the other one. This is probably the best
way to accommodate two simulators that were
written separately, and to minimise the coupling
needed between the different teams responsible for
the programs. However, this approach is only
feasible when the two studies cover aspects which
are independent. In this case, CONSIM will be used
in order to produce a list of faults which, according
to the model, will occur during the constellation’s
li fetime. Each of these failure events specifies the
type of failure as well as the time of occurrence.
This list will t hen be used to feed GaliLEO’s
simulator engine in order to trigger the right fault
managers at the appropriate time.

THE ARCHITECTURE
The main components of the GaliLEO architecture
are shown in Fig. 1.

(1) CONstellation SIMulator

INPUT consists of the input files that contain the
simulation run specifications (i.e., ground stations,
traff ic patterns, channel allocation policies,
constellation characteristics, …etc). VALIDATOR
performs the syntactic and semantic validation of
the input data. SCHEDULER analyses the event
queue and executes the actions relevant to the
scheduled events.

INPUT

SCHEDULER

GROUND CONSTELLATION

FAULT

STATISTICS
COLLECTOR

 TOPOLOGY

STATION SATELLITE

��� ����� �
	 ����
������

����� ����� ���

� ����� ��� � ��� � ���

 �! " # $ # !

%�&(') *+&�, -/.

Fig. 1. Main
components of GaliLEO architecture

 GROUND handles the ground and the UDL
aspects of the transmissions; it contains the ground
station entity (Fig. 2).

FORWARDER

UDL LINK
ROUTING

CALL
SIGNALLING

QoS
MANAGER

QoS
MONITOR

ACCESS
TECHNIQUES

CONGESTION
CONTROL

021�324
5(687 9+:+9+; 3<5

Fig. 2. The ground station entity

CONSTELLATION handles the ISL routing aspects
of the transmissions; it contains the satellite entity
(Fig. 3).

=?>�@�A?B B C @�A

FORWARDER

ISL
ROUTING

CALL
SIGNALLING

QoS
MANAGER

QoS
MONITOR

ISL CHANGE
MANAGER

LINK STATE
MANAGER

CONGESTION
CONTROL

UDL CHANGE
MANAGER

BEAM CHANGE
MANAGER

Fig. 3. The satellite entity

TOPOLOGY keeps tracks of the ground station and
satellit e movements; it contains the animator entity.

 FAULT manages the failures which may happen to
any of the elements of the simulated system.
STATISTICS COLLECTOR collects, for each
simulation run, the data necessary to compute off-
line statistics required by the user.

Assumptions and definitions
GaliLEO is based on some assumptions and
definitions, the most significant of which are
reported here. A cell is an area of the earth
ill uminated by one satellit e spot beam. A footprint
is the whole coverage area of a satellit e, i.e. it is the
sum of the areas covered by its spot beams. An
overlap area is the area in which a ground station
(i.e. a single subscriber or a concentrator) can
receive a signal with an acceptable power level from
more than one adjacent spot beam. A UDL is the
aggregation of all spot beams pertaining to the same
footprint; it has a fixed capacity, and is uni-
directional. A beam is the communication medium
between a satellit e and a spot on the ground. A
beam has a variable capacity which must not exceed
the capacity of the UDL the beam belongs to. A
node of the network is any station or any satellit e.
Satellit es have multibeam antennas for up-link
reception and down-link transmission, and are
connected to neighbouring satellit es by means of
inter-satellit e links (ISL) which are uni-directional.
A handover (or hand-off) occurs when either a UDL
connecting a satellit e to a ground station is cut off ,
or when a beam change occurs (inside the same
UDL), or when an ISL is cut off . All connections
passing through that link must be re-routed.
Connections are assumed to be full -duplex, with
forward and return channels, where forward
channels are intended to be from source to
destination, and return channels from destination to
source. A call connection drop occurs when an
existing connection has to be dropped. It may
happen either when there is a handover and the
connection cannot be re-routed, or when high
priority traff ic preempts all the resources used by a
connection. A call block occurs when a new
connection cannot be established. It may happen
when there are no resources available in the network
in order to support the new connection.
 A satellit e is associated with a space position
which varies deterministically over time. Satellit e
movements are described through orbital
mechanics; a ground station is associated with a
ground position which may vary randomly over
time if the station is mobile.
Traff ic generators can generate both call
connections and data. Data can be transmitted over
connections (connection-oriented traff ic) or in best-
effort mode (connection-less traff ic). In the
following, when data is used, we refer to both
connection-oriented and connection-less data, even
though the simulation of connection-less data
transmission over a LEO constellation will be not
implemented during the first stage of this project.

Logical behaviour
Figure 4 shows the logical diagram of GaliLEO’s
behaviour.

ISL CHANGE
MANAGER

ISL
ROUTING

LINK STATE
MANAGER

CONSTELLATION
SOURCE

CALL CONNECTION
GENERATOR

QoS
MANAGER

QoS
MONITOR

CONSTELLATION

GROUND

GROUND
SOURCE

CALL CONNECTION
GENERATOR

PACKET
GENERATOR

UDL
ROUTING

QoS
MANAGER

ACCESS
TECHNIQUES

QoS
MONITOR

CONGESTION
CONTROL

CALL

SIGNALLING

(PACKET)

FORWARDER

CONSTELLATION
ANIMATOR

CALL

SIGNALLING

(PACKET)

FORWARDER
ANIMATOR

= "uses"

CONGESTION
CONTROL

UDL
ROUTING

UDL CHANGE
MANAGER

FREQUENCY
REUSE

GROUND
SOURCE

FAULT
GENERATOR

FAULT
MANAGER

CONSTELLATION
COMPONENTS

GROUND
COMPONENTS

FOOTPRINT

BEAM
ANIMATOR

BEAM CHANGE
MANAGER

Fig. 4. Logical diagram of the architectural core of the simulator

The ground source module provides a model of the
behaviour of ground traff ic sources. It provides
possible actions such as a request for a new
connection, a request for releasing an existing
connection, and a request to modify the
requirements of an existing connection. The packet
generator module implements the traff ic models.
The UDL routing module selects the first and the
last satellit es to enter and to exit the constellation,
respectively. The entry satellit e is chosen with
respect to geometrical as well as to traff ic load
considerations, while the exit satellit e is chosen with
respect to geometrical considerations alone. The
access techniques module handles the assignment of
slots within a MAC frame. It is provided with
information about the traff ic (e.g. load and traff ic
type) and computes the band assignments
accordingly.
The footprint animator module tracks the state of
the UDLs between all satellit es and all ground
stations. In other words, the footprint animator is
responsible for saying which satellit e is able to

communicate with which ground station. The call
signalling module is responsible for establishing,
releasing and modifying the connections. All these
operations involve interactions with the equipment,
or more precisely with the resource manager of the
equipment. The call generator module provides a
model for the dynamics of the connections. It gives
information such as the connection requirements,
the delay between two connections, the delay
between two modifications of the connection
requirements, the modified requirements, the source
and destination of the connection, etc. The call
modification facilit y is used to model the dynamic
behaviour of a concentrator with a variable number
of incoming connections multiplexed onto a single
outgoing connection. In the simulation there are as
many call generator types as types of users. The
forwarder module provides services to switch the
traff ic packets. The switching is done either using a
connection identifier (for connection-oriented
communications) or using default routes (for
connection-less communications).

CONSTELATION
SOURCE

GROUND
SOURCE

PACKET
GENERATOR

LINK STATE
MANAGER

ISL ROUTING

UDL
ROUTING

FORWARDER

 QoS
MANAGER

QoS
MONITOR

ISL CHANGE
MANAGER

ACCESS
TECHNIQUES

CONGESTION
CONTROL

CALL CONNECTION
GENERATOR

TOPOLOGY

= "uses"

FOOTPRINT
ANIMATOR

CONSTELLATION
ANIMATOR

CALL SIGNALLING

GROUND

CONSTELLATION

UDL CHANGE
MANAGER

BEAM
ANIMATOR

BEAM CHANGE
MANAGER

Fig. 5. The architectural core of the simulator from an implementation point of view

The QoS (Quality of Service) manager module is
responsible for the management of the equipment
resources as well as the translation from one
requirement/resource description to another. The
QoS manager also performs call admission control.
There is one QoS Manager attached to each satellit e
and ground station. The QoS monitor module
ensures that packets relevant to a given connection
are compliant with the connection QoS contract.
The congestion control module monitors the
resource status in the station or in the satellit e as a
result of traff ic. If congestion occurs, appropriate
actions are taken such as throttling down the
sources. The frequency reuse manager module
takes care of frequency allocation for each spot
beam of a satellit e. The ISL change manager
module handles all changes in ISL characteristics:
this may happen in connection re-routing if, for
example, an ISL is switched off . The UDL change
manager module plays the same role as the ISL
change manager for up and down-links. The fault
manager module implements the fault reaction
model. Notifications of faults are generated by the
fault generator (this entity is an interface with
results provided by CONSIM) and sent to the
appropriate satellit e components.
The constellation source module is similar to the
ground source with more limited capabiliti es. The
aim of the constellation source is to generate traff ic
confined within the constellation in order to provide
an existing network load when ground sources are
used. The ISL routing module computes the
connection route within the constellation, between
the entry point satellit e and the exit point satellit e as
provided by the UDL routing module. Since the ISL
routing algorithms used are link state, a link state
map must be maintained in each node, which
reflects the state of the whole network topology. In
order to construct the link state map, each node
broadcasts information about its status and gathers
information broadcast by other nodes. It is the task

of the link state manager module to handle the
broadcasting and gathering of information and to
maintain the link state map. The ISL animator
module implements the orbital mechanics and
therefore the satellit e movements. The ISL
properties are updated according to the satellit e
positions. The beam animator module tracks the
state of a single beam within a given footprint. It
detects the occurrence of changes in length
occurring in the beams during satellit e movement
as well as the beam hopping from spot to spot. The
beam change manager module reflects on the
satellit e the changes in beam configuration as
detected by the beam animator. The beam change
manager invokes, for example, rerouting if the result
of the beam change is such that a connection can no
longer be supported on that beam.
Figure 5 shows the above modules organised from
an implementation point of view.

THE CONNECTION SET-UP
In order to simulate connections coming from a call
concentrator (aggregated phone calls), the number
of channels of the connection is not fixed after a
connection has been set up, but can change during
the li fetime of the connection. For example, a
concentrator may set up a single connection for all
the phone calls it handles, and may simulate both
new phone calls and old closed phone calls by
varying the number of channels used by the single
connection as set up at start time. In other words, a
number of n phone calls from station i to station j is
simulated by the generation, in station i, of a unique
connection that requests n channels.
The connection set-up model is synchronous, so that
routines called in sequence allocate the resources
(according to their availabilit y) in a simple way.
This makes it impossible to analyse the connection
set-up time, as this model makes it instantaneous.
The connection set-up procedure is triggered by a

generator, which creates a connection and passes it
as an argument to the set-up routine of the source
station. This routine returns a connection whose
requirements are less than or equal to the one
originally created by the generator. If no call block
occurs, the returned connection is the same as the
one passed as an argument to the set-up routine;
otherwise it is reduced by an amount equal to the
blocked channels. The connection may also get
completely blocked due to a lack of resources. The
set-up routine in the source station is the same as the
set-up routine in each node, that is, in each station
and each satellit e. When a set-up routine in a given
node is called with a connection as its argument, the
node first checks for local availabilit y of resources.
If the connection can only be partially
accommodated because of limited resources, the
number of forward/return channels in the
connection is reduced accordingly. The connection
is then passed as an argument to the set-up routine
of the next node towards the destination. When the
set-up routine of the next node returns the possibly
shrunk connection, local resources in the node are
then allocated for the returned connection, i.e. the
state of the node is updated, and the connection is
returned to the caller.
The call connections are full -duplex, and variable in
size. Connections may shrink either as a
consequence of a handover, or because of the pre-
emption of resources (for example, when high
priority traff ic has to be transmitted). At the current
time, the limitations of the call connections are: the
UDL routing is purely geometric and does not
depend on congestion on the satellit e constellation;
end-to-end integrated routing is not supported by
the design; only point-to-point connections are
considered; a connection cannot be split on more
than one path (however, forward and return
channels are not necessarily on the same path); no
re-routing of connections happens as a consequence
of growing or shrinking a connection (aggregate
connections case); and no partial re-routing of
connections is possible inside the constellation.

THE TOPOLOGY
One of the most delicate points in the GaliLEO
architecture is the topology module. It includes the
three sub-modules already mentioned: the footprint
animator, the constellation animator and the beam
animator. The functions of the topology module can
be split i nto three domains: the constellation
topology, defined in terms of satellit es and ISLs, the
ground topology, defined in terms of ground
stations, and the UDL topology (Fig. 6).

GROUND-TOPOLOGY

CONSTELLATION-TOPOLOGY

UP/DOWN LINKS
TOPOLOGY

Fig. 6. The topology module

All these topologies are dynamic because satellit es
move with respect both to the ground stations and to
each other; ISLs are switched on/off due to
pointing/acquiring/tracking requirements; up- and
down-links are also switched on and off ; and
ground stations may be mobile.
Each topology must have space and time references.
The space reference(s) may be discretized.
Although it is not of special use for the
constellation, in some cases, as for example in
Teledesic, the discretized space reference can be
adopted for the ground topology because of the
satellit e spot-hopping capabilit y. In this case, the
discretization is performed by dividing the earth’s
surface into cells. In the UDL topology, since all
references are already expressed in terms of ground
stations and satellit es, space discretization is not an
issue. Although it is also possible to express the
UDL topology co-ordinates in terms of ground co-
ordinates and satellit e co-ordinates (latitude &
longitude positions), for the UDL topology we
prefer a discrete space reference in ground
station/satellit e units. For the constellation topology,
we decided a space reference for example in
latitude/longitude units. Note that the time/space
relationship involves both satellit e movements and
the earth’s spin. Latitude/longitude co-ordinates are
suff icient as long as satellit es are considered to be at
the same (or at least a close) altitude.

The constellation topology
This module generates events for all i nteresting
state changes in the ISLs. In particular, an event is
generated when a link goes on or off , and an event
is generated when a link’s length changes by more
than one user-specified threshold. The event trigger
handling of the changes is managed in the ISL
Change Manager. It is responsible for checking that
those connections which are using the modified ISL
are still valid. If not, connection re-routing is
performed.
In order to work properly, the constellation
topology needs to know the trajectory of each
satellit e (usually done by describing the parameters
of each orbit), and the initial position of each
satellit e.

The ground topology
The ground topology returns the time-dependent
position of a ground station (the co-ordinates

depend on the space reference chosen), and the
position of a ground station with respect to another
ground station (information used for frequency
reuse computation). It needs to know the initial
position of each ground station, and the trajectory
of each ground station which is assumed to be
mobile.

The UDL topology
The UDL topology covers both the dynamics of the
footprints (footprint animator) and the dynamics of
the beams within a given footprint (beam animator).
The Footprint Animator generates events to the
satellit es and the stations when the situation of a
station changes with respect to a given footprint (for
example, if a station leaves the footprint of a given
satellit e or if a station enters the footprint of another
satellit e). Using this method avoids having to poll
the footprint status. The Beam Animator generates
events which have to be placed in the context of a
given footprint. It notifies the satellit e and the
station that some beam characteristics have changed
(this case is likely to happen if steerable antennas
are used) or that a station is changing beam (in the
case of fixed antennas).

ROUTING
Routing policies are one of the main aspects that
will be studied using GaliLEO. In the LEO
constellation context, routing is usually split i nto
UDL routing and ISL routing. Up-Link (UL)
routing is the process by which the source ground
station selects the source satellit e used to forward
the packets of the connection, while Down-Link
routing is the process by which the destination
ground station selects the destination satellit e from
which the packets of the connection will arrive.
The criteria used for UDL routing is the availabilit y
of resources in the satellit e and in the ground
station, the minimisation of the handover rate on the
UDL, and the quality of the communication between
the ground station and the satellit e.
Given a source satellit e and a destination satellit e,
as provided by UDL routing, ISL routing computes
the (or at least one) optimal path between these two
satellit es. The criteria used are: resource availabilit y
in the satellit es and ISLs, minimisation of the
handover rate, quality of the communication among
satellit es, and length of the path.
Once UDL and ISL routing have been defined, we
can define the end-to-end routing as made up by
UDL plus ISL routings. Whether end-to-end routing
should be considered as three separate processes or
one whole process (referred to as integrated
routing), is an issue which will be studied in
GaliLEO. Non integrated end-to-end routing results
in possibly non optimal routes, while integrated
routing leads to scalabilit y issues.
Let us consider the configuration depicted in Fig. 7.

source

destination

1
1

1
1 12

2
2

2

satellites

1
1 computed route
2 optimal path

Fig. 7. An example

of a configuration

Considering UL/DL routing as separate processes,
let us suppose that the up-link selected is the one
denoted by ‘1’ between the source and the
constellation. The ISL routing must then compute
an optimal path between the source and destination
satellit es, as chosen by the UL and DL routing.
However, if we consider end-to-end routing as a
single process, the up- and down-links selected
might not be the same (as denoted by the ‘2’).
Although they are not optimal in the context of U/D
link routing alone, they belong to the optimal path
in the context of an integrated end-to-end routing.
Integrated end-to-end routing can be implemented
in the ground stations or in the satellit es. In the first
case, the ground stations must have information
concerning the whole topology, i.e. the link state
maps, which contain information about the
availabilit y of resources in each satellit e and in each
ISL, in each ground station and in each up/down-
link. Since there are more ground stations than
satellit es, keeping this information up to date is a
heavy task; moreover the information must be
conveyed through the constellation and distributed
to each ground station. As a result, performing
routing in the ground station does not completely
remove the routing functionality from the satellit es.
The broadcasting and processing of link state
information must still be performed in each satellit e.
On the other hand, the route computation is only
present in each ground station. Apart from this
aspect, the routing is a straightforward process with
minimal interaction between ground stations and
satellit es.
If implemented in the satellit es, there is a price to
pay in an additional complexity in the routing
process, but the information needed does not have
to be sent to each ground station. As one of the
goals of routing is also to determine which up-link
to use, when a ground station is asking for a route to
a satellit e, it is not able to determine which satellit e
the request must be forwarded to. One solution is to
send the route request to all the satellit es currently
in view. These satellit es then have to compute the
optimal route and send the responses to the ground
station. The station then selects the actual optimal
route from the proposed set of routes. This is quite
heavy but it minimises the information that has to be
stored in the ground station.
Figure 8 represents the interaction between routing
and other components of GaliLEO inside the ground
station.. It is assumed that integrated end-to-end

routing is used, and that routing takes place in the
ground station.

Resource Management

Routing

Call Signalling

SourceHandover Management

G/A Interface

Fig. 8. The situation in the ground station

If we consider a reference model as introduced by
an OSI stack, we can draw an equivalent 'layered'
view as represented in Fig. 9. The higher a box is in
the picture, the closer it is to the application layer.
The lower a box is, the closer it is to the physical
media.
Figure 10 shows the equivalent layered view for the
satellit e (the non layered view can easily be derived
from).
The service provided by the routing component is to
compute a route which supports a connection
characterised by a source, destination and user
requirements. Furthermore, routing needs a resource
management component that provides information
about resource availabilit y, and an Air/Ground and
Air/Air

interfaces for the routing algorithm to

exchange information with other routing algorithms
in the constellation.

Call Signalling

Ground/Air
Interface

Handover Management

Source

Routing

Resource Management

Fig. 9. Layered

view

Call Signalling

Ground/Air
& Air/Air
Interface

Handover Management

Routing
Resource Management

Fig. 10. Satellite

layered view

FAULT MANAGEMENT
Today's satellit es are getting more and more
complex in order to support the current broadband
services. Increasing the payload complexity leads to
an increase in the number of possible fault sources
and also a financial impact. Consequently it is
crucial to accurately model the reliabilit y of a
satellit e constellation. By reliability we mean the
probabilit y that a given failure does not occur in a
certain time frame. Reliabilit y can thus be
completely described with a density function as
defined in the probabilit y theory. The goal of
reliabilit y modelli ng is therefore to select the proper
density function for each element to be included in a
model and to calculate the resulting reliabilit y
accordingly. Before trying to compute the density
function, it is mandatory to give a precise

description of the system (i.e. its architecture) for
which we are trying to define a reliabilit y model.
Some assumptions have to be made. An obvious
example is the use of ISL. It is relevant to the
present analysis, since ISLs need dedicated
hardware which has to be taken into account in the
reliabilit y model. The various faults that might
occur can be roughly categorised into partial and
catastrophic failures. While the former still allow
the satellit e to work (even in a degraded mode), the
later are fatal. Each of these failures then has to be
weighted over time using a probabilit y density. The
determination of these density functions can be
complicated and necessitates an extensive
understanding of how a satellit e is made up.
Finally, all these density functions (or their
respective reliabilit y functions) must be merged in
order to compute the general reliabilit y function of
the satellit e. Note that even if two failures are only
partial, this can still be fatal to the satellit e.
Therefore the general reliabilit y must cope with the
reliabilit y of each element as well as the
relationships among different failures. Trying to
compute this reliabilit y function is thus quite
complex and many simulations have to be used in
order to have an estimate of the reliabilit y function.
GaliLEO by itself, will not compute the reliabilit y
function since CONSIM is dedicated to this. Rather,
the simulation engine of GaliLEO will be fed with
events notifying failures. The nature and time
distribution of these events is provided by
CONSIM.

SOME IMPLEMENTATION
ASPECTS

This Section will cover some implementation issues
related to simulation performance. As is often the
case with broadband network simulations, the time
needed to simulate a short period of time may be in
the order of days; hence, the concern about
performance enhancement. We will go briefly
through considerations about distributing the
simulation, choosing carefully the right simulation
tool, and simulating the network packet flows.
One of the performance issues of the GaliLEO
design is the distribution of the simulation
components among different computers. One
possible partition is to run all the ground stations on
one computer and the constellation on another. In
order to choose a suitable partition, each possible
solution must be evaluated taking into account the
amount of data that has to be exchanged between
the various distributed entities, the balance of the
computation load on the different entities, the time
dependencies between the entities, and the resources
available. Once a distributed framework has been
established, the mechanism supporting the
distributed paradigm must be chosen. Commonly
such a mechanism provides "remote procedure call "
like services such as those with Sun's RPC or Corba
architecture. It is also crucial that the transition from

local calls to distributed calls does not entail the
software being completely rewritten. Both GaliLEO
and LeoSim are written in Java and use the same
simulation engine. Java supports a distribution
paradigm through the definition of serializable
classes and through remote method invocation.
These two mechanisms are often referred to as RMI
(Remote Method Invocation) faciliti es. Remote
method invocation occurs when a method is invoked
on an object which is not stored locally but which is
accessible through a network. The method call i s
then transferred to the target machine, is executed
there, and the results are transferred back to the
computer which called the method. In order to be
invoked remotely, the class including these methods
must by some means register the methods. The
concept behind serializable classes is strictly
connected to remote method invocation.
Considering a remote method which accepts a
complex variable as its parameter (i.e. an object, not
a basic type), the parameter value must be
transferred along with the method invocation.
Furthermore, the target computer (which may be
using a different hardware) must be able to
understand the parameter value. A class that can be
transferred in such a way is called a serializable
class. Basically, the class must provide a set of rules
defining the coding and decoding of the instances of
this class, and this results in an intermediate
representation independent of the network
architecture, as well as the source and target
computers.
In a medium term range, the simulation engine of
GaliLEO and LeoSim have been scheduled to make
use of the RMI faciliti es provided by Java in order
to distribute the simulation execution. Currently, the
simulation engine optionally supports distributed
event processing on SMP (Symmetrical Multiple
Processing) computers.
Enhancements in system performance at an
implementation level are either related to the
algorithms and data structures or to the development
tools. All algorithms and data structures which are
likely to be called often during the simulation must
be carefully chosen. This is the case for the handling
of the event list. Since thousands, if not milli ons, of
events will be generated, queued and processed
during a simulation run, these operations have to be
eff icient.

As far as the development tools are concerned, care
must be taken about the execution of Java programs.
Java was originally intended to be the language for
developing Internet applications and delivering
them on different hardware architectures without re-
compilation. In that context, Java is an interpreted
language making use of a Java virtual machine to
execute byte-code resulting from the compilation.
The Java virtual machine takes care of the mapping
between the byte-code and the native host
architecture. However, Java is also a classical

programming language used to develop applications
that do not need seamless cross platform support.
This is even more true since the interpretation of
byte-code results in severe performance
degradation. In this case, care must be taken in
using a Java virtual machine including a JIT
compiler, which translates on-the-fly byte-code into
native code. Preliminary measurements with
LeoSim showed that the increase in execution speed
approaches 90%. These measurements were made
using a JIT compiler named TYA under Linux with
JDK 1.1.6. Other tests must be carried out with
Kaffe and Guavac (other JIT compilers under
Linux) and with Symantec's JIT compiler bundled
with Borland's JBuilder under Windows 95. There
would also appear to be work in progress to develop
Java GCC front end (Cygnus' Sourceware Project
for Java) and also a Java to C translator (named
Toba). Simulating the packet flows in a network
simulator is useful because it is the only way to have
a precise model of network behaviour.
Unfortunately, this is also rather a heavy process,
and even heavier for a simulator of LEO
constellations because there is potentially a huge
number of traff ic sources (since the constellation
covers the whole earth), and there is an enormous
number of packets crossing the network per unit of
time (since the bandwidth offered by the equipment
is in the order of hundreds of Megabit/s). As a
result, simulating each packet individually is just
wishful thinking, so a way has to be found to
provide a satisfying description of the packet flow
behaviours without having to simulate them
individually. Two possible solutions are: i)
simulating packet batches; ii) modelli ng the effects
of the packet flows and using this model in the
simulation.
The first solution is equivalent to using a time scale
coarser than when simulating packets individually.
This approach is valid as long as the use of a less
precise time scale does not lead to the loss of
interesting events that have to be tracked
individually. By using this technique, it is possible
to decrease the number of events related to the
packets by a ratio which is equal to the average size
of a packet batch. This approach has the advantage
of being widely applicable. The second solution is
more easily explained with an example. Currently,
in LeoSim, simulation takes place at a call l evel
only. Although this approach is eff icient, it does not
simulate buffer overflows which might in turn result
in connection drops. A rather optimistic approach is
used, where the call admission control is expected
to accept a connection only if no overflow due to
that connection can ever happen. Another approach
is to construct, in a pre-study, a model of the
buffer’s behaviour, by knowing the call admission
control algorithm used, the state of the buffer, and
the load offered to the buffer. The result of this pre-
study is, for example, a two dimensional matrix
providing a probabilit y distribution for each of the

pairs (buffer state, offered load) for a given CAC
algorithm. This matrix is then used by LeoSim in
order to generate random buffer overflows. As the
state of the buffer and the offered load change, a
different cell i n the matrix is used. If it turns out that
this approach works, the performance increase
would be even more interesting than the previous
solution using packet batches. Unfortunately, the
example presented here is a straightforward one
since the model established only has to provide
information about buffer overflows. It is likely that
an elaborate traff ic behaviour model taking into
account all i nteractions occurring in the system will
be diff icult to obtain.

GaliLEO PROJECT
MANAGEMENT

GaliLEO is a large project. Moreover, it is being
developed by several teams working remotely. As a
result, the project management of GaliLEO is
crucial. GaliLEO’s project li fe cycle is following a
spiral approach based on a core simulator which is
gradually being enhanced.
The analysis and design are object oriented since
the usage of object orientation is one of the corner
stones of GaliLEO’s general nature. The
methodology relies heavily on diagrams since the
communication within the project team is one key
point. Diagrams are following the UML standard as
well some internal guidelines. All deliverables are
accessible, in HTML, from a Web server. The same
applies for the source code which is accessible from
a Web CVS repository. Currently, the primary
development and analysis platform is Linux and no
commercial software is being used. We hope to be
able to carry on like this.

CONCLUSIONS
Considering the questions still open in the field of
LEO constellations, there is an urgent need for a
simulation tool that would provide a means to study
these questions. GaliLEO is meant to be this tool
and will , as a first step, be aimed at the study of
constellation access techniques, routing algorithms,
and fault management. The development team of
GaliLEO is located over many different places, and
this implies the need for well defined analysis and
design phases as well as a tightly managed
development.
GaliLEO is an ambitious project with many
challenges which will provide in the end a valuable
tool for Cost253 activities as well as for the
organisations involved in LEO research.

REFERENCES
[1] Simulation of a Routing Algorithm using

Distributed Simulation Techniques; C.D.
Pham, J. Essmeyer, S. Fdida.

[2] Reliabilit y modelli ng for constellation
systems; M. Annoni – CSELT; Cost 253
Working Document TD(98) XX

[3] Instant UML; P.A. Muller - Wrox Press.

[4] The Java Tutorial (2
nd

 edition); M.
Campione, K. Walrath, A. Huml; Addison
Wesley.

[5] The Java Tutorial continued; M. Campione,
K. Walrath, A. Huml; Addison Wesley.

[6] Concurrent Programming in Java ; D. Lea ;
Addison Wesley.

[7] UML and C++; R.C. Lee and W.M.
Tepfenhart; Prentice Hall .

