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ABSTRACT

This paper proposes an architecture design for a tool suitable for emulating DA-TDMA

(demand-assignment-time division multiple access) satellite access schemes. The tool

presented, named FRACAS1, is particularly suitable for comparing the performance of

different satellite channel allocation policies. Using FRACAS, a service provider can

choose from different policies for sharing a satellite channel among a number of users.

Some allocation policies, selected from those available in the literature, are built-in, while

others can be designed from scratch and added without much effort. The parameters of

the built-in allocation policies can easily be changed in order to exploit the full potential

of the allocation schemes. FRACAS’s features permit the optimisation of satellite

resource usage in accordance with the traffic pattern supported. FRACAS enables

research teams and students to explore and compare different multiple access schemes,

and to develop simulation runs for various kinds of service-induced traffic, including

aggregate traffic, which is typical in a local area network (LAN) interconnection

environment.

Keywords: emulator, simulator, satellite access schemes, performance comparison,

TDMA, aggregate traffic

1. INTRODUCTION

Complex communication systems where satellite links are involved are difficult to test

and tune up without the help of simulation tools. First of all, using satellites is very

expensive - the satellite time spent in testing and tuning-up the system must thus be as

short as possible. Second, during the performance evaluation in a real environment it is

not always possible to find the right amount of traffic, and the most appropriate traffic

                                                
1 FRAmed Channel Access Simulator
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pattern and data aggregation that will put the system under the maximum amount of stress

so that its limits can be validated.

In the last few years, many methods for accessing a data satellite channel in TDMA have

been proposed in the literature, such as FODA/IBEA [7], CFRA [12], FEEDERS [10],

DRIFS [11]. Older ones include SS-ALOHA [17], 2D-ALOHA [18], DAMA SCPC,

FODA [19], C-PODA [20], F-PODA [20], R-ALOHA [21], RAN [22], CRRMA [23],

CRIER [24], RACER [25, 26], CFDAMA [27, 28], BSA [29], ABCS-Dornier [30]. Few

of these have actually been  implemented as prototypes, and even less have come onto the

market. It is therefore difficult to compare their performances, mainly because of a lack of

a common testbed for the various solutions.

Our past experiences during the test phase of satellite access schemes in real

environments [1] convinced us of the need for a simulation tool for evaluating the

performance of satellite networks access schemes that would enable us to define the

network topology, the traffic carried out by each individual station, the allocation request

policy, the bandwidth allocation policy, and the statistics to be collected in order to

evaluate the performance of such a network. Such a tool would facilitate changing the

allocation policy in order to make comparisons and find the most suitable one. In order to

avoid unnecessary approximations, it should be possible to specify exactly the mechanism

of a given allocation policy, in order to get a precise emulation of a system’s behaviour.

Existing simulators are generally bulky and expensive. Moreover, most of them are

general-purpose tools, so they do not exploit the particular structure of TDMA access

methods.

We present the architecture of a high speed, lightweight emulator that is useful for

simulating framed channel allocation schemes. We describe a proof-of-concept

implementation, which is completely functional and easily extendible. The source code of

our prototype implementation is freely available to students and researchers for

downloading from:

 ftp://fly.cnuce.cnr.it/pub/fracas.tgz.2.

The prototype is an easily portable software package, written in C3. The allocation

methods considered by FRACAS may have either a centralised or a distributed control.

The stations receive data traffic from a number of different simulated sources, which are

representative of the actual traffic. For example, our prototype implements the generation

of fixed rate, Poisson, Markov modulated Poisson, fractal traffic and other traffic models,

both with predetermined or freely selectable parameter values. Also, the architecture

makes it possible to adapt the simulation time and the accuracy of results to the user’s

                                                
2 Users who download the FRACAS code are kindly requested to notify any of the authors of this paper.

3 In our current implementation it runs under UNIX.
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purposes, both for a preliminary network dimensioning, and when a precise exploration of

the network performance is required. FRACAS produces some key performance figures,

which are useful for studying the performance of an allocation policy, for example

average and peak packet delay, traffic impulse delay, and packet loss due to queue

overflow.

The rest of the paper is organised as follows. Section 2 presents an overview of some of

the simulators available on the market. Section 3 describes the FRACAS architecture,

with reference to our prototype implementation. Section 4 discusses the reliability  and

the accuracy of this simulator. In Section 5 we compute bounds to the discretisation

errors. Section 6 describes some aspects of our prototype implementation. Section 7

concludes the paper with a summary and an outline of future work.

Technical details on the FRACAS prototypal implementation are not reported in this

paper, but can be found in [14].

2. AN OVERVIEW OF NETWORK SIMULATORS

Most of the simulation tools which can be found in the literature are discrete-event

simulators, i.e. they model a certain system as it evolves over time by a representation in

which the state variables change only at a countable number of points in time. These

points in time are the ones at which an event occurs, where an event is defined as an

instantaneous occurrence which may change the state of the system. Let us examine some

of the most popular tools.

OPNET4 is a simulation tool for analysing communication networks by using models [2].

It is based on an extended finite state machine and is written in C. OPNET models are

specified in terms of objects, each with configurable sets of attributes. These attributes

can be specified either by a graphical process, an associated text file, or as variable

parameters in the simulation description file. The specification of the models is organised

into a hierarchy of four different levels: network, node, process, and parameter. When the

model is specified, OPNET generates a simulation program written in C. Although C is

not a particularly suitable language for modelling and simulation, the choice of UNIX/C

guarantees the portability of the system.

BONeS5 is a simulation system for studying communication network models [3]. BONeS

SatLab is a flexible, special software package for the design, animated visualisation and

analysis of satellite-based communication systems. SatLab can be used to model

                                                
4OPtimised Network Engineering Tool
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mobile/satellite systems, which may include satellites, fixed earth stations, and moving

vehicles/persons. It provides multiple animated views of global satellite systems, uplink,

crosslink and downlink analysis, jamming, and adjacent satellite interference analysis

representation of fixed, mobile and portable earth stations. Three types of simulation can

be performed: positioning, design and communication simulation. The positioning

simulation lets the user model analyse and animate various configurations of satellites,

fixed earth stations and moving stations. The design simulation automatically performs

simulation for a range of parameter values. For example, the user can determine the

interference of communication satellite systems on other communication systems or the

probability of interference between satellite systems for selected frequencies. The

communication simulation is used to track the source and route of data packets and to

determine their best route based on relative distance, velocity, angle, visibility, traffic

congestion, and interference between two or more nodes.

RESQ6 is a software package developed at IBM Research for defining and solving

extended queuing network models [4, 5]. Problems which have been analytically solved

typically fall into the class of queuing systems for modelling the performance of computer

communication systems. For the analytical solution of a queuing model, assumptions

must be made about the system modelled. Typically these assumptions relate to the

process of arrivals at the queues, the service processes at the queues, and the scheduling

disciplines. RESQ provides a numerical solution component, QNET4, which uses the

convolutional algorithm for product form networks, and a simulation component, named

APLOMB. RESQ is especially strong in the statistical analysis of simulation outputs and

the determination of appropriate simulation run lengths.

AMS7 is an environment which integrates facilities and tools to build a communication

system, to study its performance, and to validate the connectivity [6]. The user of the

“atelier” can construct a concise system in a graphical environment and execute it,

starting from models of several standard networks, such as LANs (Ethernet, Token Ring,

FDDI), WANs (X25, TCP/IP), satellite (TDMA, FDMA) and radio-networks available in

a specific library. AMS was designed on the basis of existing and proven packages, such

as QNAP2, GSS (graphical support system), MODLINE and S-PLUS.

                                                
6 RESearch Queuing package

7 Atelier for Modelling and Simulation
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3. ARCHITECTURE OF FRACAS

FRACAS was conceived in a research environment, with the goal of being highly

specialised, and therefore efficient, so that it can be used even on CPU bound machines.

A very essential but robust prototypal implementation exists, which has been used in

research projects [9, 13]. As it can analyse the performance of demand assignment access

schemes that have some sort of frame structure, it is well suited for satellite TDMA access

schemes, which are always framed. Unlike the products cited in the previous section,

FRACAS is a discrete-time emulator, so it is not based on events. This is the most

important feature of FRACAS’s architecture.

In our prototypal implementation, the time granularity is equal to the frame duration,

which is the basic time unit of any action in FRACAS. This implies that everything that

happens inside a frame appears to happen at the end of it, and time measurements with a

resolution better than a frame time are not possible.

We argue that, when emulating TDMA allocation schemes, event-based simulation is an

overkill because, most of the time, all that is needed to get reasonably accurate emulations

is to study what happens at the end of each frame. In order to obtain such a behaviour, it

would certainly be possible to use an event-based simulator to generate regularly time

spaced events, one per frame, but this would mean that the event-based simulator would

not be used efficiently.

The architecture of FRACAS is maximally efficient when the time resolution is equal to

one frame. However, this choice is not limiting, therefore any specification of the desired

time granularity is also possible for each emulation run. Although our prototypal

implementation does not allow it, the time granularity could be made as small as desired

with respect to the frame duration. This feature would be useful when, after having run a

series of tests and having tuned the system to their liking, experimenters require and get

the maximum possible precision from the simulation, by reducing the discretisation

effects at the expense of running time.

FRACAS assumes that a frame of fixed duration is accessed by a number of stations in

conformance with the allocations they have received. At each frame, each station receives

a number of traffic units (TRU)8 to be transmitted on the framed channel, then it makes a

request for an allocation. When all the stations have made their requests, the allocations

are computed. The frame where these allocations will be used by the stations is delayed

with respect to the frame where the requests have been made by an allocation delay,

which generally depends on the allocation policy. At each frame, each station queues the

                                                
8A TRU is the unit of measure of the traffic in FRACAS.
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traffic units it has to transmit on the framed channel, and dequeues a number of traffic

units equal to the allocation received (provided the queue does not get empty). Each pair

requester-allocator defines a specific allocation policy.

In summary, at each frame the following actions take place inside FRACAS:

• for each station, a number of traffic units is generated, depending on the traffic pattern

that feeds the station, and the input queue is lengthened accordingly;

• for each station, a request for allocation is made;

• all the allocation requests are analysed and the allocations for a future frame are

computed;

• for each station, the allocation for the current frame, computed beforehand, determines

how many traffic units can be transmitted, and the input queue is shortened

accordingly.

3.1. Modelling a network with FRACAS

Modelling a network with FRACAS involves choosing an allocation policy, from those

implemented,  which defines the allocator and requester to be used. Then, for each

station, a set of traffic generators must be chosen and, finally, a set of workers which will

output the desired statistics. Figure 1 shows the logical flow of data used to compute the

allocations inside FRACAS, starting from the data produced by the generators.

generator

generator

generator

generator

generator

generator

generator

Station 1

requester allocator

Station 2

Station 3

Station 4

allocation delay

Station 
   1

Stat.
2

Station
      3

Station
     4

frame allocations

Fig. 1. Flow of data inside FRACAS

The traffic generators are responsible for computing the number of TRUs entering a

station in each frame. All TRUs have the same length, which is chosen according to the
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granularity required. The output of a generator is the number of TRUs generated in the

current frame. At each frame, a station queues the TRUs received from all its generators,

and dequeues at most a number of TRUs equal to its allocation. The TRUs produced by a

generator are collectively identified by how many they are, that is, they are not

individually distinguishable. In order to queue them, the station at each frame just sums

the current number of computed TRUs (queue length) to the number of TRUs received as

input from the generators. Each station is fed by an arbitrary number of generators, each

defined by individual generation parameters. In practice, a generator is a function that

returns a single number (number of TRUs generated) each time it is called.

The requester is the object responsible for computing the number of TRUs requested by

each station (station request) in each frame. The output of a requester is the number of

TRUs requested in the current frame. There is only one requester for all the stations, that

is, all the stations use the same criterion for making their request. At each frame, each

station calls the requester in order to compute its allocation request. There is a specific

requester for each allocation policy. An example is the queue requester, used mostly for

testing, which issues a request equal to the length of the station’s input queue.

The allocator is the object, invoked once per frame, which computes the allocations for

all the stations. It is invoked after all the stations have called the requester. The output of

the allocator is an array of numbers representing the number of TRUs that will be

allocated to each station after the allocation delay. The allocations computed are used

after an allocation delay which is characteristic of the allocation policy used.

The workers are used to gather the statistics of interest. An arbitrary number of workers

can be defined, each of which has a specialised job. When the emulator runs, at each

frame many quantities inside the emulator can be probed in order to compute statistics on

them. The candidate quantities are termed observables. An example of an observable is

the number of TRUs per frame that is produced by the generators of an individual station.

Each worker makes a single operation on the observables, such as listing them in a file,

and computing their mean, variance, quantiles, mass distribution, and so on. All the

observables can either be computed per station, or globally, considering the system as a

whole.

The basic observables are expressed in numbers of TRUs per frame per station, and for

each station it is possible to monitor the number of TRUs in input (that is, those produced

by the generators), the number of TRUs sent, the available allocation, and the queue

length.
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                                 Fig. 2. Computation of  the queuing delay.

The delay is the only observable which denotes a measure of time, expressed in numbers

of frames. It is computed as the difference between the frame number when a TRU is

generated and the frame number when it is sent (queuing time), plus the satellite round

trip time. The delay observable is also special because it can be computed either per frame

or per TRU. In the former case, for each frame a delay is computed which is the mean of

the delays of the TRUs sent in that frame; in the latter case a delay is computed for each

TRU sent.

�Denoting by I(f) the cumulative number of TRUs in input to a given station at frame f,

and by S(f) the cumulative number of TRUs sent by the same station, FRACAS computes

the queuing delay of the nth TRU (which we call ∆n) as ∆n = fs - fi, where S(fs) = I(fi) = n.

Figure 2 illustrates the concept. The leftmost graph shows the behaviour of cumulative

input and output traffic. When the two lines overlap, there is no queuing delay, that is,

traffic arriving at the station from generators is immediately sent, because there is enough

allocation available for that frame. When this is not the case, traffic is enqueued and

therefore it experiences a delay. The rightmost graph is depicted sideways in order to

illustrate how it is computed from the leftmost graph. It depicts the delay experienced by

each TRU. The scales of the axes labelled “cumulative traffic” are numbered in TRUs, so

that each TRU produced by generators can be individually identified on that scale.

Figure 3 illustrates, with C pseudo code, the dynamic behaviour of the emulator and the

role of the workers.
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 do {

     frame_number += 1;

     for_all_stations_do {

         input = run_generators (this_station);

         queue += input;

         sent = min (queue, allocation);

         queue -= sent;

         request = compute_request (this_station);

     }

     compute_allocations (frame_number +

allocation_delay);

     gather_statistics (frame_number);

 } while (! stop_condition ());

 run_workers_and_print_results ();

Fig. 3. The core of the emulator.

The core of the emulator is a loop which, for each frame, computes the traffic produced

by the generators of each station, the length of the queues, and the traffic sent by the

stations. It then calculates the allocations for a future frame and gathers the statistics

needed by the workers. When the emulation ends, the workers elaborate the gathered data

and produce their output.

3.2. Policies available

A number of requesters and allocators are included in FRACAS, which implement some

allocation policies. The policies included in our prototype implementation are:

• fixed TDMA a fixed assignment to each station;

• FODA/IBEA a centralised control system developed at the CNUCE Institute in the

framework of the Olympus project, validated by simulative and

experimental results [7];

• V2L-DA a centralised control system which supports variable bit rate video

traffic [8];

• FEEDERS a partially distributed control protocol derived from FODA/IBEA [9,

10];

• DRIFS a fully distributed control protocol derived from FODA/IBEA [9,

11];
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• CFRA a slotted centralised control allocation policy developed at ENST-

Toulouse [12].

3.3. Output statistics

FRACAS can collect statistics of given quantities. Those quantities that are eligible for

this purpose are called observables. As already mentioned, all observables are measured

in the number of TRUs per frame, apart from the delay observables, which are expressed

in frame duration units (the time length of a frame). Statistics on observables are

available per station or globally. In our prototype implementation, observables include the

traffic in input to a station (created by generators), the station’s input queue length, the

input data dropped because of the queue overflow, the requests made and the allocations

given to a station, the traffic sent, the allocation unused, and the traffic delay (queuing

plus round trip time).

Statistical calculations are performed by worker objects. In our prototype implementation,

some workers are built in (listing, mean, variance, percentile, distribution), and others can

be added as an external program. This feature gives FRACAS great flexibility, as it is

easy to interface it with external statistic packages.

3.4. Types of traffic

In the most common classification, access methods provide different services for stream

traffic and bursty traffic. According to the traffic categories as defined in the ATM Forum

TM4.0 (“ATM service categories”) [31], the former type of service is intended for real-

time, fixed-throughput applications, such as telephony or videoconferencing which are

coded at a constant bit rate (CBR) and which  require a guaranteed bandwidth and a fixed

delay. Recently, the need for the transmission of variable bit rate (VBR) video traffic has

emerged. This kind of traffic has some real-time requirements, and is very bursty, thus

requiring allocation policies that are different from both CBR and bursty traffic. The

second class includes all the jitter-tolerant applications, i.e. unspecified bit rate (UBR),

and available bit rate (ABR) service categories. This latter class is intended for best-effort

traffic, such as the  one flowing between interconnected LANs. Bursty traffic typically

has no hard real-time requirements but the burstiness of the sources requires sophisticated

allocation methods in order to make efficient use of the expensive satellite bandwidth.

Bursty traffic can be further classified into interactive and bulk  traffic. Although

interactive traffic typically represents only a small fraction of the total bursty traffic, it

nevertheless requires particular attention because it is much burstier than bulk traffic, and

requires small and possibly constant delays. In fact, sites which use satellite links for

interconnection often generate all these types of traffic.
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A DA-TDMA satellite access scheme is then faced with a great variety of traffic types,

whose interaction is usually very complex.

The FRACAS architecture assumes that all the traffic inside the network is divided into a

fixed number of classes. Our prototype includes four classes, namely stream, vbr,

interactive, and bulk. The names of the classes reflect the type of traffic they are supposed

to be used for. According to the traffic classification previously introduced, we think that

most categories of traffic are represented in the four classes implemented in FRACAS,

but other classes of traffic can be added if necessary.  All the parts of FRACAS keep

different structures for each of the four classes of traffic. The input queue of each station

is thus composed of four counters, the request issued by the requester is composed of four

numbers, and the allocations computed by the allocator are expressed by four numbers per

station. There are observables for each class so, for example, the mean value of the VBR

input queue at a specific station can be computed.

The reason for having different classes of traffic is that the allocation policy can treat

them differently. Moreover, the generators may be different for each traffic class. The

FRACAS engine makes it natural to define a hierarchy on the classes of traffic, which is

used when the station’s input queues are shortened according to the allocations received.

In our prototype, stream  has the highest priority class, so the stream allocation is

subtracted from the stream input queue first. Then, if the stream allocation is not entirely

used, an extra space is added to the VBR allocation (the second highest priority class).

The VBR allocation thus updated is then subtracted from the VBR input queue. If the

updated VBR allocation is not entirely used, an extra space is added to the interactive

allocation, and so on. The bulk traffic has the lowest priority. Each station maintains the

stream traffic allocation constant for the entire duration of the allocation, while the

allocator assigns a VBR allocation between a minimum and a maximum value. Interactive

and bulk traffic receive allocation amounts which depend on the allocation policy chosen.

This hierarchy of priorities on the classes of traffic guarantees that the different delay

characteristics of each type of traffic are respected for the protocols currently

implemented.  From the FRACAS designer’s point of view this hierarchy can be easily

changed or rearranged according to possible new allocation policies (for example, a new

hierarchy where some classes have the same priority). Once the data hierarchy has been

chosen, the user is not allowed to change it from the input file which defines most

parameters used in FRACAS.
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3.5. Modularity and interface with external programs

As already mentioned, allocation policies can be built into FRACAS by writing standard

C code routines. It is then possible to test new allocation policies with any number of

stations, each one fed by an individual traffic pattern. The implementation of a new

allocation policy requires some work, but the ones that are part of our prototype

implementation are good starting points, so it is possible to use them as templates.

Traffic generators and workers can be incorporated inside FRACAS, or they can be built

as external applications. Indeed, there is one ad hoc generator (external generator

interface) which just reads from an external program (or file) a list of numbers, which are

interpreted as the number of TRUs generated per frame, and there is one worker (external

worker interface) which writes a list of observables to an external program (or file). This

feature is particularly useful if other programs already exist that can generate numbers

representing traffic or that can make particular statistical computations on lists of

numbers.

Our prototype implementation features a number of built-in generators, including

constant-bit rate, Poisson, periodic impulsive with constant rate or Poisson bursts,

Markov-modulated impulsive, and fractional Gaussian noise.

4. VALIDATION OF THE PROTOTYPE IMPLEMENTATION

The prototype emulator was tested during its development in order to validate it. This

phase is very important and delicate because if the developed tool does not give a valid

representation of the system under study, or the user cannot be confident about the data

produced, no useful information about the actual system is given. The goodness of a

simulation model is measured by the closeness of the model output to that of the real

systems. We had the opportunity to compare the results obtained transmitting data with a

real system realised in the framework of the Olympus satellite utilisation program [1],

with those obtained using FRACAS.  The comparison of the packet delays, for a

particular traffic pattern feeding the station used in the test, showed no significant

difference between the plots obtained using FRACAS and those obtained using the real

system (Figs. 4-6).



This work has been published on Telecommunication Systems, Vol. 12, No. 1, pp. 21-37, 1999

Copyright ©1999, Kluwer Academic Publishers, <URL:http://www.kluweronline.com/>

13

200

300

400

500

600

700

800

900

1000

1100

de
la

y 
[m

s]

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

packets

emulated

computed

Fig. 4. Packet delay of a station during a transient of the traffic
load. Measurement  and emulation results.

The traces refer to an individual station whose input is loaded with a traffic step with a

constant rate higher than the bandwidth of the satellite channel.  The allocation method

used in this test is FODA/IBEA, and the test run lasts for 7s, for a total of 80,000 packets

generated. The real system data are measured using MTG [15], a traffic generator and

measurement system that we developed for testing satellite access schemes, while the

emulated data was obtained by running FRACAS on an IBM Risc 6000 530H, using

0.15s of CPU time. While both the prototype emulator and the real system use the same

allocation algorithm, the results are not identical, because the real system uses many

implementation and hardware-dependent tricks, which are difficult to reproduce exactly

in FRACAS. Moreover, the resolution of the emulated packet delay is one frame (20 ms

in this case), which introduces a further error with respect to the measured delay. This

granularity error on the packet delay will be discussed in Section 5. These effects

notwithstanding, the emulated traces reflect the measurements well, considering that we

are comparing an emulator with a real system, not merely a mathematical formula. The

relative errors are in the range of [-5%; 5%] for the packet delay, and in the range [0-7%]

for the queue length. It should also be pointed out that this test was chosen because it is

particularly severe, in that it highlights possible problems in the emulator. Indeed, the

traffic that feeds the station saturates it, that is, the station is never allocated enough

capacity to empty its input queue. In such a situation all the emulation errors accumulate.
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Fig. 5. Input queue length of a station during a transient of the
traffic load. Measurement and emulation results.

Figure 6 shows another test comparing the performance of a real network composed of

four stations running the FODA/IBEA protocol, and the emulated behaviour. All stations

are fed with Poisson traffic, with stations from 1 to 4 receiving 42%, 32%, 20% and 6%

respectively of the overall network load. Three runs are performed, with three different

overall network loads, up to a load of 85%, which saturates the allocation method and

results in queues at station 4. The real data are collected over periods of 30 seconds (1500

frames), using MTG, for a total of 360s (18,000 frames) and 270,000 packets, and the

emulation used 35s of CPU time. Even with this complex set-up and the rather short

running period, the relative differences between measured and emulated delays are in the

range of [-6%; 2%], with only one point where the difference exceeds one frame length

(20 ms). Once more, we stress the fact that we are comparing a software tool with a real

network, and we argue that the differences are remarkably low.
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5. ERRORS DUE TO TIME DISCRETISATION

FRACAS is a discrete time emulator with a granularity of one frame. Since all the timings

are multiples of one frame, no delay shorter than this quantization unit can be resolved.

This implies, for example, that null delays in a real system are rounded up to a half frame

delay. The delays obtained with FRACAS generally have an error in the range of

[-1; 1] frames. This means that the mean packet delay has a maximum error of 1 frame,

though the error is effectively halved for emulation runs of any significant length. Let us

examine this issue in closer detail.

When FRACAS runs an emulation with a time resolution set to one frame, as in our

implementation, its concept of time is limited to the current frame number. The traffic

generators in FRACAS compute how many packets are generated in the current frame,

but no knowledge exists either about the exact instant in the frame when each packet is

generated or about the instant in the frame when the packet is sent. FRACAS’s idea of

delay in this case is that, if a packet is generated in a frame (i.e. the packet arrives at the

station) and there is an allocation available after N frames (i.e. the packet leaves the

station), the packet has a delay of N frames. In reality, the packet’s delay would lie in the

range of [N-1; N+1] frames, depending on the point in the frame when the packet arrives

and the point when it leaves.

Figure 7 illustrates this point. Only the queuing times are considered, as the delays are

simply computed by adding the round trip time to the queuing time. In both cases a) and
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b), FRACAS computes a delay equal to three frames, because the packet leaves three

frames after the frame where it has arrived. However, the actual packet’s delay ranges

from 2 to 4 frames, because FRACAS has no notion of where in the frame the packet

arrives or leaves.

Thus each packet’s delay, as computed by FRACAS, has an error in the range [-1; 1]

frames with respect to the emulated system. The delay error is the sum of two errors: the

error on the position of the arriving packet in the frame (arriving error), and the error on

the position in the frame of the leaving packet (leaving error), each in the range

[-0.5; 0.5] frames. We will show that the former becomes negligible in practical

emulation runs, so the total error is limited to the  range[-0.5; 0.5] frames.

The leaving error is not easily estimated, because it depends on the position of the

allocation inside the frame, which can have any distribution (and thus any mean) inside

the range. Consider,  for example,  a fixed allocation policy, where each of N stations gets

1/N of the frame space, always in the same order (station 1 first, station 2 second, etc.).

The packets transmitted by station 1 always arrive at the beginning of the frame, and the

uncertainty on their position inside the frame is limited to the width of the allocation

itself. The arriving error thus lies in the range [0.5-1/N ; 0.5] frames. In this case, the

range where the leaving error lies is reduced by a factor N. For a given allocation policy,

it may be possible to compute a distribution of the allocation position, and thus get an

estimate of the range of the leaving error which is more accurate than the generic

[-0.5; 0.5] frames, as in the case of a fixed allocation. However, this is generally not

possible.

queuing time = 3.9 frames

queuing time = 2.1 fr.

packet arrives

packet leavespacket arrives

packet leaves

case a)

case b)

Fig. 7. How the positioning of the packet inside a frame affects the
delay measurement error.
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The arriving error, on the other hand, can be estimated with high accuracy if we assume

that the instants when the packets arrive have no correlation with the frame repetition

period, which is generally the case. Under this assumption, a packet’s delay error has a

uniform distribution in the error range. If we assume an emulation run lasting a number of

frames k (say, k »100), the error of the mean is well approximated by a Gaussian

distribution with a null mean and variance equal to 
1

12k
 frames, which is negligible for

any practical purpose. For example, in an emulation run lasting 10000 frames, the 99.7%

confidence interval of the mean of the packet delay would be less than ±1% of the frame

size.

Thus, for all meaningful emulation runs for which the packet generation rate is not

synchronised with the frame rate, we can assume that the error of the mean delay

computed by FRACAS has an error in the range [-0.5; 0.5] frames, whose distribution

depends on the allocation policy.

6. SOME ASPECTS OF OUR PROTOTYPAL IMPLEMENTATION

The main strengths of the FRACAS architecture are its speed, extendibility, and the

existence of a working prototype whose portable source code is freely available to

students in the field of satellite framed allocation methods. The prototype has knowledge

of leading-edge satellite allocation methods, and we hope that researchers will contribute

to extend its knowledge, so that a common testbed for this kind of access methods can be

made available to the scientific community. Work is in progress towards enabling the

prototype to run independent replication tests, in order to accurately assess the reliability

of the results obtained.

Another area of improvement will be the implementation of time resolutions smaller than

one frame. Although we believe that smaller time resolutions generally add nothing to the

significance of the results, it may be important in some corner cases, where the behaviour

of the emulated system appears to be unstable, and changing the time resolution may

provide deeper insight into its response to traffic loads.

To get an informal feeling of the performance of our prototypal implementation of the

FRACAS architecture, we ran the same emulation test using both FRACAS and OPNET.

The choice of OPNET for the comparison rather than other simulators (such as BONeS,)

was dictated by the fact that an OPNET version is already installed in our laboratory, and

we used it in a comparison study between different access schemes. The test was a

simulated 2000 seconds run of a complex traffic generator configuration feeding 16

ground stations which access a common satellite channel using CFRA [12] as the

allocation policy. The duration of this test yields a 95% confidence interval of ±7% on the
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packet delay. The OPNET sources were written by researchers at the ENST-Toulouse,

and the FRACAS sources by one of the authors of this paper in the framework of some

research on the relative methods of different satellite access schemes [13]. The double

platform on which the simulation was run was intended to make the emulation results

more reliable. Both programs were run on an IBM Risc 6000 530H workstation, with very

similar results.

OPNET ran the emulation in 3h 10m 8s, while the FRACAS prototype ran it in

1m 29s 33. The ratio of speeds is a massive 128:1 in favour of FRACAS. Such a great

difference of speed can easily be explained by looking at the number of “elaboration

units” corresponding to the same run for the two programs: while OPNET, a discrete

event simulator, generated 23,700,000 events, which is an average of more than three

events per packet, FRACAS computed 68,900 frames, each containing an average of

about 100 packets. From another point of view, OPNET generated 2700 events per

second, while the FRACAS prototype computed 771 frames per second. These are

comparable numbers, and are certainly more comparable than the run times.

We don’t claim any generality for the above result, because by no means can the

described test be considered as a true performance comparison. Moreover, it must be

pointed out that OPNET is a commercial product and is far more flexible than our

prototype, which is an academic program confined to framed access schemes. Indeed,

since OPNET is a discrete event emulator, it follows each packet individually, allowing a

potentially greater precision and detail of the resulting statistics.  

7. CONCLUSIONS AND FUTURE WORK

We have presented the architecture for a performance evaluation tool, which is especially

suitable for research teams and students to explore and compare different satellite access

policies in TDMA. The strengths of this tool are: a) its execution speed; b) its knowledge

of allocation methods which are the subject of current research; c) the free availability of

a proof-of-concept implementation.

We are investigating the possibility of augmenting the FRACAS architecture to enable it

to consider the behaviour of allocation policies when faced with severe casualties, such as

signal fades. This would allow the analysis of recovery from disastrous events (power and

component failure) or poor signal reception (deep signal fading).
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