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Abstract—Device-free localization algorithms attract, among
others, the attention of researchers working in the Ambient
Assisted Living (AAL) scenarios, where the target user might not
be able or willing to wear any devices. We concentrate on systems
that exploit the Received Signal Strength indicator coming from
wireless devices whose position is known, called anchors. In this
paper we select and test the main device-free localization solutions
and experimentally compare their performance using a smaller
number of anchors than commonly found in the literature. We
illustrate the procedure used to validate our comparing procedure
and we give suggestions on usability in the application scenarios
typical of AAL.

To the best of our knowledge, this is the first direct comparison
between different device-free algorithms using the same input
data for all of them, and the first one that compares their
performance with a varying number of anchors. Thanks to
the characteristics of our comparison procedure, we can make
suggestions about the more appropriate algorithms to use for
different kinds of applications.

I. INTRODUCTION

Indoor localization systems have attracted the attention of

research and industry in the last decade. In contrast with

outdoor environments, where GPS is a convenient solution

for most uses, the indoor arena has no clear winner yet, and

research is showing more and more clearly that only a mix of

different methods can provide enough performance and ease

of use in most scenarios.

In this paper we concentrate on device-free localization sys-

tems based on RSS (Received Signal Strength) measurements.

Such systems allow localization of a target (a person) who is

not collaborating in any way with the system, in contrast with

localization systems that require the user to carry an active

device sending or receiving signals – such as a smartphone or

a probe – or a passive device such as an RFID tag.

Such systems are commonly mentioned in the literature

because of their ability to identify the location of one or

more unknowing people with high accuracy, even through

walls [1]. Typical applications are military, law enforcing,

or even useful in emergency and rescue situation, where an

environment which is difficult or temporarily impossible to

access should be monitored for the presence and movement
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of people inside. These applications require the installation of

several dozens wireless transmitters around and inside the area

of interest, all of which should be able to hear each other’s

transmitted signals and allow for multi-target detection and

tracking with high precision in real-time.

Analogous applications, but with lower time and space

accuracy requirements, include monitoring of spaces for the

presence of people or big animals, like intruder detection and

similar situations.

Other applications fall under the umbrella of Ambient

Intelligence, especially the Ambient Assisted Living (AAL)

scenarios [2], where the target user might not be able to

wear any kind of hardware, either because of disabilities

or simply because it is too complex. The location can be

domestic or related to assistive environments. In these sce-

narios we can assume that the presence of small independent

devices communicating via wireless protocols is going to be

more and more ubiquitous [3], which means that device-free

localization can be obtained “parasitically”, i.e. without the

need for installation of devices specifically dedicated to it,

but using already deployed devices which are appropriately

configured via software. The real-world emergence of Internet-

of-Things installations brings this scenario closer than ever:

this is the scenario in which we are most interested. Note

that in this scenario we envision that the number of wireless

devices available in a small environment (few rooms) should

be expected to be smaller than the 30-60 devices commonly

seen in the literature, at least in the foreseeable future.

RSS-based device-free systems work by estimating the RSS

among each pair of fixed-position wireless devices (anchors),

so creating a sort of detailed RSS photograph as a function

of time that depends on the position of the user into the

environment. The way the RSS information is used to infer

the position of the target user is a matter of research, and

current solutions are still in their youth. The algorithms follow

two main approaches. The first one is based on estimating

the position using classification-based methods on specific

features of the RSS data. [4], [5]; a time-consuming calibration

phase is required to obtain the training data. The second

approach, known as Radio Tomographic Imaging (RTI) [1],

evaluates the interference image created by the presence of

the target; calibration can be automated when necessary.

In this work we describe our experience in using three
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of the most relevant localization algorithms available in the

literature. The three algorithms are compared by considering

requirements coming from application scenarios typical of the

AAL domain, with specific attention to the number of anchors

used. In particular, we considered two algorithms based on

the RTI method and one algorithm based on classification-

estimation. The proposed comparison is performed in an

indoor environment composed by two communicating rooms,

and is based on a single set of experimental measurements

to which the three algorithms are applied. This setting allows

not only to compare the error performance of the algorithms

selected, but also to assess the resilience of the selected

systems to a reduction in the number of anchors deployed in

the environment, which as mentioned is of particular interest

in the AAL domain. As far as we know, this is the first

analysis that compares different algorithms using the same

set of experimental measures, and the first one that makes a

comparison using a variable number of anchors. We anticipate

that the analysis presented in this work will help to define

which is the best device-free localization system as a function

of the application scenarios.

In the following sections, we first illustrate the measurement

campaign we performed, by describing the localization area

and the sensor application used to gather the RSS measure-

ments. Then, we describe the selected localization algorithms,

the evaluation metrics taken into account and, finally, a pre-

liminary discussion about the results obtained when comparing

the three algorithms.

II. THE MEASUREMENT CAMPAIGN

We execute the measurement campaign in two rooms hosted

within our research institute, we refer to them are as the

localization area, for a total area of 75 m2 (see figure 1(a)).

Some obstacles are present within the localization area, such

as a desk placed in the right lower corner of the first room,

and a square formed of wooden walls in the upper center part

of the second room, so the net usable area is 59 m2. The floor

is made of square tiles of edge 60 cm. We stick on the floor

a number of marks in order to draw the path that the target

follows during the experiments. The target moves along the

path shown in figure 1(b) at a regular speed of one step per

second, with the help of a metronome, and stays still for 5 s

on the points indicated with a circle.

The anchors are the nodes of a Wireless Sensor Network

(WSN) deployed in the localization area. They gather the RSS

values during the target’s walks. Anchors are IRIS Motes from

Crossbow [6], based on the RF transceiver AT86RF230 at

2.4 GHz, compliant with IEEE 802.15.4 standard, most of

which are hung on the room walls. Three measurements are

done, using 16, 20 and 24 anchors. In figure 1(b) the group of

16 anchors is shown with red squares. The four black squares

are added for the 20 anchors measurement, and finally the

four diamonds are added for the 24 anchors measurement. An

additional anchor is a sink node connected to a Linux-based

laptop via USB, located on the desk, which collects all the

RSS value information from the network.

The RSS values are gathered with a TinyOS application run-

ning on every node of the WSN. The protocol, inspired by the

SpinQueue algorithm [7], is used to schedule node transmis-

sions, in order to prevent packet collisions and maintain a high

data collection rate. When an anchor is transmitting, all other

anchors receive the packet and measure the received signal

strength of the received packet. These RSS measurements are

transmitted to a base station along with the node’s unique ID.

The base station collects all RSS measurements and forwards

the data to a laptop for storage and later processing.

Each anchor is tagged with a unique index, i = 1 · · ·n, the

protocol consists of rounds in which each anchor broadcasts

a message. At startup, the sink node broadcasts a starting

message and then just listens to the network, receiving and

logging the messages coming from the network. After the

starting message, the anchor with index 1 broadcasts the first

packet. All other anchors receive the packet, perform the RSS

measurement and store its value on the payload of the packet

they will send next. After the first anchor has transmitted, the

next one (i = 2) broadcasts its packet containing all the stored

RSS values, and so on until all anchors have transmitted. The

next round is then transmitted on a different IEEE802.15.4

communication channel: four different channels are used in a

round-robin fashion. After four rounds, the whole procedure

is restarted.

In the real implementation, this basic sketch of the algorithm

is augmented with error checking and auto-correction features

based on a series of timeouts which are necessary to cope with

the occasional packet loss and possible consecutive packet

losses which may cause lost synchronization in the token-

passing procedure. This is necessary because the token-passing

is completely distributed apart from the sending of the start

packet at the beginning. Using the above described hardware,

we are able to send about 60 packets per second.

III. DEVICE-FREE LOCALIZATION ALGORITHMS

Device-free localization algorithms based on the RSS rely

on two main approaches for the target localization, namely

classification and Radio Tomographic Approaches. The former

is based on the classification of features linked to the target

position through the measures of RSS [4], [5], the latter

evaluates the interfering image produced by the user presence

[1]. In the following these two different approaches are briefly

described, in particular the classifier (CLAS) [5] as well as the

RTI approach that comes in two flavors, namely the shadow-

based radio tomographic imaging (SRTI) [1] and the variance-

based one (VRTI) [8].

A. Classification-Based Method

In [5], authors propose a localization algorithm based on

the learning by example (LBE) strategy to localize and track

a target. The localization problem is addressed only by con-

sidering the available RSS values at the nodes of the wireless

sensor network deployed in the localization environment.

Each anchor aj , j = 1 . . . N is a transceiver located at a

known position (xaj
, yaj

), j = 1 . . . N . Under the assumption
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(b) Path of the target user.

Fig. 1. Localisation area and path of the target user. The pillar has wooden walls, the dotted lines are the walls of the area, composed by two communicating
rooms.

that each node communicates with all the remaining N − 1
nodes, a total amount of L = N(N − 1) wireless links

are available. The measured value of signal strength sij on

the link l = (ai, aj) depends on the interactions among

the electromagnetic signal radiated by the ith source, the

localization scenario, and the targets to be localized. The

calibration phase of the RSS values is performed without the

target in the localization area, in order to distinguish the impact

of the user movements on the RSS values from the impact of

the surrounding environment. During the localization phase

the RSS values are filtered taking into account the RSS values

ŝij collected during the calibration phase. The contribution

of the surrounding environment is filtered out from the RSS

measures sij obtained when the target is in the area, by defining

a differential measure of the RSS values as

Γij =
sij − ŝij

ŝij
, i = 1 . . . N, j = 1 . . . N − 1.

The differential measure is acquired for all the WSN links

Γ = {Γij , i = 1 . . . N, j = 1 . . . N − 1}. Starting from the

differential measurements Γ, the addressed problem is about

the definition of the probability that the target lies in a given

position x = [x, y] of the localization area.

To evaluate the probability that the user lies in a given

position, a classification technique based on Support Vector

Machine (SVM) is adopted. SVM ([9], [10]) is a binary

linear classifier, meaning that it assumes linear separability

of two classes of data and attempts to find a hyperplane

in the feature space separating the data points of the two

classes. The optimum separation is achieved by the hyperplane

that maximizes its distance from the marginal data points on

each side (the support vectors), that is the maximum-margin

hyperplane. Thanks to the use of kernel functions, used to

nonlinearly map the feature space into a high-dimensional

space, computation of the hyperplane can be made using

quadratic programming, a computationally efficient optimiza-

tion technique. SVM requires a learning phase, that is a

preliminary system calibration procedure where a set of RSS

measurements at a grid of points in the environment are

collected. Points chosen for learning correspond to possible

locations of the user that should be localized. For each point

a tuple of RSS values is produced, and is stored in a learning

database. Once the learning phase is completed, the system

enters the localization procedure, when every time a new RSS

tuple is produced, the SVM uses information learned from the

tuples stored in the database to classify it, that is to find the



most likely position of the user.

An SVM method needs R training configurations ∆,

∆ = {(Γ,xm, vm)r, r = 1 . . . R}

given by the set of differential measurements Γ, a random

position xm with the associated state

vm =

{

1 if the target is in xm

−1 otherwise.

During the training phase, the training set is used to find

a suitable decision function Φ by means of an SVM strategy

[9], [10]. Assuming that the localization area is a lattice with

C squared cells, the authors define the decision function for

the given cell c by

Φ(Γ, vc) =
C
∑

p=1

R
∑

r=1

{

αr
cv

r
cΘ(Γ(r),Γ(p), p, c)

}

+

C
∑

p=1

Rsv
∑

r=1

{

vrc −
C
∑

p=1

R
∑

r=1

{

αr
cΘ(Γ(r),Γ(p), p, c)

}

}

Rsv

where Θ(·) is the kernel function adopted for the problem

addressed, the α values are the Lagrange multipliers of the

optimization problem associated with the SVM problem, and

Rsv is the support vector, i.e. the set of training data where

the Lagrangian multipliers for the cell c are not equal to zero.

Reference [11] provides an in-depth analysis of the problem.

Through the decision function, the classification problem can

be defined as a binary classification problem.

Note that the sign of the decision function can be replaced

by the posterior probability Pr{v = 1|Γ} [12] to construct a

location-probability map of the monitored area. The posterior

probability gives information about the degree of membership

of test data to a particular class, even if sign[Φ(Γ)] does not

correctly classify the input pattern. This behavior is mainly

due to the generalization capabilities of the SVM approach

that, in presence of highly non-separable data, constructs the

best separating hyperplane even if the optimal solution to the

optimization problem [10] does not exists. In this way, the

input test data could belong to the wrong half-plane identified

by the decision function. However, taking into consideration

the posterior probability it is still possible to compute the

distance of that example to each class.

The mapping between the state information and the poste-

rior probability can be provided by

Pr{vc = 1|Γ} =
1

1 + exp {γΦ(Γ, vc) + δ}

where γ and δ are obtained by resolving the optimization

problem of a cost function of the training data set, as shown

in [11].

Finally the estimated target position is obtained as

x̂ =

C
∑

c=1

xPr{vc = 1|Γ}

C
∑

c=1

Pr{vc = 1|Γ}

ŷ =

C
∑

c=1

yPr{vc = 1|Γ}

C
∑

c=1

Pr{vc = 1|Γ}

B. Radio Tomography Method

In [1] and [13] the authors discuss the application of

tomography to a wireless sensor network, calling this method

Radio Tomographic Imaging (RTI). The idea behind the RTI

method is that the target modifies the RSS field in a way that

depends on his locations; RTI approaches, therefore, exploit

the RSS measurements observed along the peer-to-peer links

to obtain an image reconstruction of the object position.

In [1] the authors describe how to localize a target through

the estimation of the mean RSS (SRTI), while in [8] they

improve the algorithm performance by exploiting the RSS

variance (VRTI) experienced during target movements. Both

algorithms are here evaluated exploiting RSS measurements

performed on multiple channels (i.e. frequencies) as described

in [13].

The network area is conventionally divided into pixels, so

the movement of the user is discretised on the pixel set.

The problem is to find a mapping that links the measured

RSS per link to the RSS per pixel. The authors adopt a very

simple linear model

s = W spx + n (1)

where spx ∈ R
P is the RTI over the pixel set, so spxi

is the

value of RSS for the i − th pixel, s ∈ R
L is the vector of

the measured value of RSS over the set of links, n ∈ R
L

is the noise of the measures, and finally W ∈ R
LxP is the

mapping matrix whose entries are the weights that link the

pixel values to the link values of RSS.

The weights of the mapping matrix W can be calculated

assuming that the power of the received signal is proportional

to the inverse of the squared distance covered by the signal,

and that the target crossing a link (ai, aj) influences a set of

pixels. Precisely, the authors assume that the set of influenced

pixels fall within the area limited by an ellipse. Hence, for the

weights of the matrix W the following equation is applied:

wij =
1√
LoS

{

φ if d1ij + d2ij < LoS + λ
0 otherwise

(2)

where LoS is the distance of the line of sight between two

nodes, d1ij and d2ij are the distances from the center of pixel

j to the two node locations for link i, and λ is a tunable

parameter describing the width of the ellipse. The parameter

λ is typically set in the range from 0.1 to 0.6 m. The ellipse is



Fig. 2. Pixels affected by RSS changes due to an intervening body along the
line of sight between transmitting and receiving node.

primarily used to simplify the process of determining which

pixels fall along the LoS (line of sight) path, as shown in figure

III-B, where gray pixels represent a person’s body. Finally,

the parameter φ is a scaling factor used to normalize the RTI,

whose typical values are between 1 and 100 dB2.

The model estimation of the values of the function of

RSSs per pixel in the equation (1) provides a mathemati-

cal framework to relate the target’s movement in space to

the RSS values per link. The model is an ill-posed inverse

problem, that is, it is highly sensitive to measurement and

modeling noise. The solution spx can be calculated by the

least-squares approach, but the solution can not be unique,

hence a regularization method [14] must be applied to obtain

the solution. The method proposed by the authors propose is

Tikhonov’s regularization. Using Tikhonov’s method the least-

squares problem is solved by

ŝpx = argmin
spx

1

2
||W spx − s||2 + α||Qspx||

where Q is the Tikhonov’s matrix that produces the solution

with the desired properties, and α is a tunable regularization

parameter. To calculate the parameter α many algorithms have

been developed [15]. The least-squares problem solution is

ŝpx = (W ′W + αQ′Q)−1W ′
s.

As stated above, the matrix Q captures some features of the

measured acquired. Taking into account the covariance matrix

C as well as the variance σ2
N of the noise process linked to the

measures, the solution of equation (III-B) can be calculated as

ŝpx = (W ′W + σ2
NC−1)−1W ′

s. (3)

The entries cij of the covariance matrix C can be calculated

assuming that the spatial attenuation of the field decays

exponentially [13]

cij = σ2exp

(

−dij
δc

)

where dij is the distance between centers of pixels i and j,

σ2 is the variance of pixel attenuation, and δc is a correlation

parameter that can be used to determine the desired amount of

smoothness in the image. The target’s coordinates x = [x y]
are the coordinates of the maximum value in the vector ŝpx

calculated by the regularization method.

As stated above the authors propose two versions of the RTI-

based algorithm, the first one evaluates RSS differences from

the base situation, that is the RSS shadowing due to the target,

and the second one evaluate the RSS variance. The solution

showed in the equation (3) works in both cases, in fact, the

only difference between two methods is how the entries of

the vector s are evaluated. In the following we provide the

descriptions of the ss entries calculation.

When using the Shadow-based method, for every link l,
and every channel c ∈ Ch, average values of measured RSS

values {RSSlc} is computed when no target moves within

the localization area, this time is named calibration period.

The method uses the RSSlc values as a measure of the fade

level following this rule: if RSSlc1 < RSSlc2 then the link l
is in a deeper fade in channel c1 than in c2. For each link l the

RSSlc values are sorted for all channels of the set C. Finally,

the method creates a set C of size m containing the indices

of the m highest channels by fade level, and then evaluates

shadowing, that is the s entries as the mean values of the

differences between the current measured RSS vales and the

{RSSlc}, over the m highest channels by fade level.

For the Variance-based method the entries are the variances

of the measured RSS values, and no calibration phase is

needed.

In [8], the authors describe an RTI-based tracking algorithm

developed by filtering the estimated target positions through

the Kalman filter defined as

V̂ = V + σ2
mI2;

G = V̂ (V̂ + σ2
nI2)

−1

x̂ = x̂+G(x− x̂)

V = (I2 −G)V̂

where I2 is the 2 × 2 identity matrix, σ2
m is the variance of

the targets motion process, indicating how fast the object is

capable of moving. Larger values enable the filter to track

faster moving objects. The authors also take into account σ2
n

that is the variance of the measurement noise. Larger values

will cause the filter to trust more the statistical predictions

over the instantaneous measurements. The vector x̂ contains

the Kalman estimated coordinates x and y. x is a two-

element vector containing the instantaneous measurement of

the target coordinates through the RTI method. V̂ is the a

priori error covariance matrix and V is the posterior error
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Fig. 3. Error in metres for three algorithms over the 85 positions.

covariance matrix and finally G the Kalman Gain. The authors

provide some values for these parameters through a set of

measurements performed during their experiments.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We made a total of three measurements, with 24, 20 and

16 anchors hanging from the walls, as depicted in figure

1(a). Each measurement consisted of 85 positions repeated 3

times, for a total of about 250 positions on each of which

the positioning error was computed in each of the three

measurements. While the total amount of samples is small

in a statistical sense, in the following we are going to explain

why we think our results are credible.

Starting from the three measurements, we define a total

of nine situations, three for each of the three algorithms we

have used, that is the classifier (CLAS), the shadow-based

radio tomographic imaging (SRTI) and the variance-based

one (VRTI). In this way, we can make a comparison of the

relative accuracy performance of the three algorithms when

the number of anchors change.

Each measurement was repeated three times, both for ob-

taining a higher number of error samples and making statistics

more reliable, and for being able to make a direct comparison

between the repetitions along all the 85 positions of the path.

Each graph of Figure 3 shows a line for each of the three

repetitions: the repetitions exhibit clear indications of statisti-

cal noise and a strong spatial correlation between repetitions.

We consider this spatial correlation a good indication of the

robustness of the experimental procedure. Additionally, we can

observe spatial correlation also among the different algorithms,

suggesting that in the specific anchor configuration used in

this measurement some positions points provide low-quality

information. The fact that this translates in poor performance

for all the three algorithms is an additional indication of the

robustness of the experimental procedure.

The three measurements and the three repetitions were done

in a completely independent way, at time distances of some

hours to some days.

A. Overall comparison of the three algorithms

In Figure 4 we show the error distributions for the nine

situations. For an easier comparison, the distributions are

overlaid with four scalar statistics, namely the root of mean

square (RMS) error and the 50th, 75th and 90th percentiles of

errors.

From a practical standpoint, the 75th percentile is the most

robust estimator, and indeed it is the one that is used in the

indoor localization track of the EvAAL competition [16]. The

90th percentile is useful to get an idea of the length of the tail

of the error distribution, while the median and the RMS error

are useful for comparison with statistics found in the literature.

It is apparent from Figure 4 how CLAS outperforms the

tomographic-based methods in terms of pure error perfor-

mance. This was to be expected, given given that CLAS is

classification-based, and it exploits prior knowledge that is not

available to the other algorithms. This knowledge comes at a

significant cost both in terms of installation and of flexibility.

More specifically, the training phase requires non-negligible

time to be performed by a person following a rigid protocol,

and a new training is required for any non-trivial change in

the environment, such as a rearrangement of furniture. This

is not something that is reasonably done by the end user, and

probably rules out the usage of this system from some typical

scenarios. For installation in private homes (common in AAL

scenarios), the intervention of a technician would be required

every time that furniture is reallocated. Even in places where

technicians are promptly available, the required intervention

rate could turn out to be prohibitive in dynamic environments,

such as hospitals or industrial locations, where furniture can

be expected to be routinely moved around. The time required

for CLAS training by a qualified technician is about 5 s per

cell, with squared cells of 0.6 by 0.6 meters, for an overall

8 s/m2 plus overhead for setup and testing.

SRTI has the worst error performance. On the other hand,

it needs a calibration phase which is much quicker than

the training needed by CLAS and which can be completely
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Fig. 4. Distribution of errors in the nine situations with superimposed statistics of RMS error and 50th, 75th and 90th error percentiles.

automated, requiring no human intervention. In practice, when

the system senses no motion in the environment for some

time, it can autonomously initiate a recalibration procedure

that lasts for a few minutes, and is automatically canceled if

any movement is detected in the meantime.

VRTI is midway. It does not need any training phase,

because it is not sensitive to unmoving obstacles, and as such

it is insensitive to changes in the environment. This strength

is also its main weakness: being based on signal strength

variations, it performs badly when the target does not move.

Note, however, that here we are measuring the performance

of the raw system: by adding a tracking layer with memory,

such as a Kalman filter or a particle filter, we can expect

performance to improve significantly with non-moving targets.

Table I summarizes the main characteristics of the three

algorithms; accuracy is the 75th percentile of error in the 24-

anchors measurement, which we consider the most appropriate

metrics for an experimental localization algorithm.

The CLAS algorithm gives a higher accuracy than the

others, however it requires an expensive calibration procedure

making it not ideal for the application scenarios typical of

the AAL domain. When changes in the localization area

are sporadic, the CLAS algorithm can be adopted. However,

in these cases, when installing additional anchor devices is

tolerable, other device-free technologies (such as infrared,

ultra-wideband, cameras etc...) are good candidates, especially

because they require few anchors and can provide high accu-

racy.

On the other hand, SRTI and VRTI algorithms fit best in

many scenarios where the targets move often and where the

localization application does not demand high accuracy.

For all the algorithms, the accuracy of the estimation

increases with the number of anchors, but it is still in the

usable range with as few as 16 anchors. This observation is

an interesting result because, to the best of our knowledge,

up to now the literature lacks studies on the influence of

the placement and number of anchors on the accuracy of the

device-free methods based on RSS which are the focus of this

paper.

V. CONCLUSION AND FUTURE WORK

We describe and apply a reliable measurement procedure

that can be used to compare the performance of different

device-free RSS-based indoor positioning algorithms. The pro-

cedure uses the same experimental measurements for all three

algorithms, making the comparison reliable. We show that the



TABLE I
FUNCTIONAL COMPARISON OF THE THREE ALGORITHMS.

Performance indicator SRTI VRTI CLAS

Accuracy 2 m 1.2 m 0.8 m

Configuration automated unneeded expensive

Still target detected undetected detected

Flexibility yes yes no

Reference scenario AAL, industrial,

intrusion, hospital

same as SRTI specific applications

measurements are consistent across measurement repetitions,

and the results are consistent across the algorithm results.

We compare three device-free RSS-based algorithms, which

we show to have relative strengths and weaknesses, so that

no single winner can be indicated for the generic case.

However, given the application scenario, and therefore the

requirements, this study gives an indication of the best device-

free localization. Table I summarizes these observations.

The algorithms evaluated in this work appear robust with

respect to variation of the number of anchors deployed, more

specifically we observe a gracefully decrease of their perfor-

mance as the number of anchors reduces. The performance is

still in the usability range with as few as 16 anchors deployed

around a 75 m2 indoor area consisting of two communication

rooms.

The above results encourage studies on a scenario where

the wireless transmissions generated by many small devices

installed in an smart environment are parasitically exploited

to provide information about movement of people int he area.

The information so computed has time and space resolution

that are strongly dependent on the number of devices, their

placement and their rate of packet generation. Future work

should concentrate on trying to estimate this dependence.
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