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Abstract: Device-free indoor localisation based on RSS is unobtrusive and cheap. In a world where most environment are rich

in ubiquitous small radio transmitters, it has the potential of being used in a “parasitic” way, by exploiting the transmissions for

localisation purposes without any need for additional hardware installation. Starting from state of the art, several step are needed to

reach this aim, the first of which are tackled in this paper. The most promising algorithms from the literature are used to experiment

in a real-world environment and with a rigorous measurement and analysis framework. Their positioning error performance is

analysed versus number and position of devices. The original results obtained show that the currently available RSS-based

device-free indoor localisation methods may be well suited to serve as a basis for providing a cheap localisation service in smart

environments rich in IoT radio devices.

1 Introduction

Device-free indoor localisation is a fast-growing research topic. In
the last few years several papers have appeared in the literature,
proposing promising methods that allow to identify the position of a
user in an indoor area without any need for user’s cooperation, even
behind walls.

Of these, we are particularly concerned with methods that detect
the radio field perturbations produced by a user moving in the vicin-
ity of small, low-power communications devices. The main interest
we see in these technologies is that in the foreseeable future we envi-
sion an ever growing presence of small radio transmitters in indoor
environments.

These localisation methods are capable of recognising the user
position using only the Received Signal Strength (RSS), a measure-
ment that can be readily obtained from low-cost wireless commu-
nication devices. This means that indoor localisation services can
leverage the RSS exchanged among devices deployed in the envi-
ronment to infer the user position and create new services. Since the
RSS does not require a special or a sophisticated hardware and it is
a standard feature of wireless devices, the techniques that exploit the
RSS measurements are simple and minimally invasive. In a futur-
istic scenario, we envision an environment enriched with ubiquitous
wireless devices that routinely exchange communication packets, for
which measuring the RSS comes at no additional installation cost
[1].

This scenario may lend itself to a "parasitic" usage of the radio
transmission for localisation purposes. In other words, in perspec-
tive, we imagine a situation where the transmission of radio packets
is useful for localisation purposes without the transmitters being
designed for such use. Everything we need is the RSS at the receiv-
ing side. Such information is always available at the receivers, and
requires no hardware changes to already existing systems.

There are two problems in this vision. While most papers in
the literature are concerned with using a high number of dedicated
transmitting devices [2, 3], our scenario involves a generally small
number of devices working with possible intermittent operation. For

example, in [4] 30 devices are used to survey a 70 m2 area, each
transmitting or receiving a packet every 3 ms. This is a scenario
that makes sense for a laboratory experimentation or a dedicated,
high-precision, quick-reaction system. In our perspective parasitic
scenario, for example in a domestic environment, we may expect a
lower density of devices; moreover, many of those may transmit only
occasionally. For our vision to make sense, we then need to assess
the capability of device-free systems to work with a small number of
devices, and moreover to work with devices that may transmit and

receive in an intermittent fashion. This paper is concerned with the
first problem: the number of devices.

We present two analyses: a comparison between some device-free
localisation methods based on the RSS and a study of their perfor-
mance versus the number of deployed sensor nodes. The methods
taken into account in this paper are one classification-based method
[5] and two variations on the Radio Tomographic Imaging (RTI)
method [6].

We show that RTI methods are simpler to use than the
classification-based ones, because the latter require a recalibration
every time the localisation environment is somehow changed. On
the other side, they provide better position estimation than RTI [7].

We also show that the localisation accuracy versus the number of
sensors is well-behaved down to few sensors per room, decreasing
smoothly for all analysed methods.

The paper is organised as follows. Section 2 presents an overview
on the RSS-based device-free indoor localisation methods presented
in the literature. Sections 3 and 4 detail the experimental scenario
and the algorithms analysed in this paper, respectively. Results are
reported and commented in section 5, followed by conclusions and
open research problems.

2 Related work

Many different technologies have been used to build passive indoor
positioning systems, from capacitive sensors placed on floor tiles
[8] to video cameras [9] and air pressure sensors able to detect
the human movement by differential air pressure in HVAC (Heat-
ing, Ventilating and Air Conditioning) systems [10]. While these
technologies require dedicated hardware, techniques that exploit the
RSS do not require special devices and are minimally invasive.
RSS-based device-free localisation algorithms use the RSS variation
caused by the presence of users to infer their position. Some meth-
ods simply try to detect when a line-of-sight radio link between two
devices becomes obstructed [11, 12], while others use more sophis-
ticated approaches. In contrast to simpler methods based on link
obstruction detection, the latter ones consider the whole set of distur-
bances induced by a target on all the links between pairs of devices.
Two such methods are commonly used in the literature: classification
and Radio Tomography Imaging (RTI).

Classification-based methods rely on estimation and classification
of some features linked to the target position through the measured
RSS [5], in this case machine learning and stochastic regression
models are adopted. Radio tomography imaging methods apply
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Fig. 1: A living room instrumented with transceivers for electric appliances.

imaging techniques to the interfering image produced by the pres-
ence of the target [6], in this case optimised inverse problems are
solved to get the outcome.

In [13, 14] the authors propose an approach where the path loss
and the RSS are jointly modelled based on diffraction theory Starting
from a stochastic model [15] that describes the target-induced RSS
perturbations. A Bayesian framework built on the model optimally
exploits the location information coming from attenuation, random
fading and mobility model. Since the presence of the target is shown
to affect both the attenuation and the random fluctuations of the
received power, a log-normal model is defined where the RSS mean
and variance are expressed as functions of the target location. The
increase of path-loss and power fluctuation induced by the moving
target are described by exploiting the theory of diffraction: a closed-
form analytical model is derived, tailored for the specific localisation
problem and validated on experimental data.

In [16, 17] authors propose a device-free localisation system
based on the RTI approach. A Radio Frequency Identification Device
(RFID) network is deployed in the localisation area with the pur-
pose to reduce the costs related to active sensor nodes (i.e. 802.15.4
nodes). Only few active RFID reader antennas are required, and pas-
sive transponders do not need batteries and can be easily placed in
the whole room, i.e. under the carpet or wallpaper.

The authors of [18, 19] propose a nonlinear measurement model
relating to user’s position and use particle filtering to track the
user. However, the accuracy decrease in crowd environments and
computational due to the particle filtering is high.

In [20] authors use RTI with a background learning algorithm
that models the effect of motion on the measures on each link
of the wireless sensor network. They claim two major advantages
of this method. First, the background learning algorithms adapts
to time-varying environment and offline calibration is no longer
needed. Second, performance of multi-target detection is increased.
Two background learning algorithms are introduced and analysed:
mixture of Gaussians (MoG) and kernel density estimation (KDE).
Tikhonov regularisation is applied to the reconstruction of images.

In [21, 22] the authors use RTI with a kernel distance approach
to quantify the change due to the target movements, rather than the
change in mean or variance. Using kernel distance allows authors to
locate a target who is stationary or moving, both in LOS and non-
LOS environments. The approach is that mean and variance are just
two aspects of a random variable, while it is possible to quantify
the changes in mean, variance and other distribution features in a
single metric. The authors explore different metrics including the

Kullback-Leibler divergence and kernel distance, and find that the
kernel distance performs better than other metrics in network RF
environment sensing.

In this paper we consider one classification-based method [5] and
two variations on RTI [6]. Both are explained in detail in section 4;

3 Scenario

We execute the measurement campaign in two rooms hosted within
our research institute, we refer to them are as the localisation area.
The rooms have a total surface of 75 m2 (see figure 2). Some obsta-
cles are present within the localisation area, such as a desk placed
in the right lower corner of the first room, and a square formed of
wooden walls in the upper centre part of the second room, so the

net usable area is 59 m2. The floor is made of square tiles of edge
60 cm. We stick on the floor a number of marks in order to draw
the path that the target follows during the experiments. The marks
are shown as grey crosses in figure 3. The target moves along the
path by stepping over the marks, at a regular speed of one step per
second, with the help of a metronome, and stays still for 5 s on the
points indicated with a grey crossed circle. Since the movement of
the target is precisely detailed and reproducible, creating a ground
truth for measuring the localisation error is straightforward.

Anchors are the nodes of a Wireless Sensor Network (WSN)
deployed in the localisation area. They gather the RSS values while
the target moves along the paths. Anchors are IRIS Motes from
Crossbow [23], based on the RF transceiver AT86RF230 at 2.4 GHz,
compliant with IEEE 802.15.4 standard. Most anchors are hung on
the room walls. Three measurements are done, using 16, 20 and
24 anchors. In figure 2 the group of 16 anchors is shown with red
squares. The four black squares are added for the 20 anchors mea-
surement, and finally the four white diamonds are added for the 24
anchors measurement. Of these, anchor number 1 is a sink node con-
nected to a Linux-based laptop via USB, located on the desk, which
collects all the RSS value information from the network but does not
transmit during normal operation.

The RSS values are distributed thanks to a TinyOS application
running on every node of the WSN. The protocol, inspired by the
SpinQueue algorithm [24], is used to schedule node transmissions,
in order to prevent packet collisions and maintain a high data col-
lection rate. When an anchor transmits, all other anchors receive
the packet and measure the received signal strength of the received
packet. These RSS measurements are transmitted to the laptop base
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Fig. 2: Localisation area. The pillar has wooden walls, dotted lines
represent the walls of the rooms. Numbered markers indicate the
positions of anchors.

station along with the node’s unique ID. The sink node (i = 1) con-
nected to the base station collects all transmissions from the other
anchors, which contain the RSS measurements, and forwards the
data via USB for storage and later processing.

Each anchor is tagged with a unique index, i = 1 · · ·n, the proto-
col consists of rounds in which anchors broadcast a message in turn.
At startup, the sink node (i = 1) broadcasts a starting message and
then just listens to the network, receiving and logging the messages
coming from the other anchors. Upon receiving the starting message,
anchor with index 2 broadcasts the first packet. All other anchors
receive the packet, perform the RSS measurement and store its value
on the payload of the packet they will send next. After anchor 2 has
transmitted, the next one (i = 3) broadcasts its packet containing all
the stored RSS values, and so on until all anchors have transmit-
ted in fixed order. The next round starts again with anchor 2, but
on a different IEEE802.15.4 communication channel: four different
channels are used in a round-robin fashion. After four rounds, the
whole procedure is restarted.

In the real implementation, this basic sketch of the algorithm is
augmented with error checking and auto-correction features based
on a series of timeouts which are necessary to cope with the occa-
sional packet loss and possible consecutive packet losses which may
cause lost synchronisation in the token-passing protocol. This is
necessary because the token-passing is completely distributed apart
from the sending of the starting message at the beginning. Using the
above described hardware, the WSN is able to send about 60 packets
per second.

4 Description of algorithms

As already mentioned, we consider two approaches to the problem
of device-free localisation based on the RSS, namely classification

and radio tomographic. The former is based on the classification of
features linked to the target position through the measures of RSS
[5], the latter evaluates the interfering image produced by the user
presence [6]. In the following we describe the classifier (CLAS)
[5] as well as the RTI approach that comes in two flavors, namely
the shadow-based radio tomographic imaging (SRTI) [4] and the
variance-based one (VRTI) [25].

4.1 Classification-based method

In [5], authors propose a localisation algorithm based on the learning
by example (LBE) strategy to localise and track a target. The local-
isation problem is addressed only by considering the available RSS
values at the nodes of the wireless sensor network deployed in the
localisation environment.

Each anchor aj , j = 1 . . . N is a transceiver located at a known
position (xaj , yaj ), j = 1 . . . N . Under the assumption that each
node communicates with all the remaining N − 1 nodes, a total
amount of L = N(N − 1) wireless links are available. The mea-

sured value of signal strength sij on the link l = (ai, aj) depends
on the interactions among the electromagnetic signal radiated by the

ith source, the localisation scenario, and the targets to be localised.
The calibration phase of the RSS values is performed without the tar-
get in the localisation area, in order to distinguish the impact of the
user movements on the RSS values from the impact of the surround-
ing environment. During the localisation phase the RSS values are

filtered taking into account the RSS values ŝij collected during the
calibration phase. The contribution of the surrounding environment

is filtered out from the RSS measures sij obtained when the target is
in the area, by defining a differential measure of the RSS values as

Γij =
sij − ŝij

ŝij
, i = 1 . . . N, j = 1 . . . N − 1.

The differential measure is acquired for all the WSN links Γ =
{Γij , i = 1 . . . N, j = 1 . . . N − 1}. Starting from the differential
measurements Γ, the addressed problem is about the definition of
the probability that the target lies in a given position x = [x, y] of
the localisation area.

To evaluate the probability that the user lies in a given position,
a classification technique based on Support Vector Machine (SVM)
is adopted. SVM ([26, 27]) is a binary linear classifier, meaning that
it assumes linear separability of two classes of data and attempts to
find a hyperplane in the feature space separating the data points of
the two classes. The optimum separation is achieved by the hyper-
plane that maximises its distance from the marginal data points on
each side (the support vectors), that is the maximum-margin hyper-
plane. Thanks to the use of kernel functions, used to nonlinearly map
the feature space into a high-dimensional space, computation of the
hyperplane can be made using quadratic programming, a computa-
tionally efficient optimisation technique. SVM requires a learning
phase, that is a preliminary system calibration procedure where a set
of RSS measurements at a grid of points in the environment are col-
lected. Points chosen for learning correspond to possible locations
of the user that should be localised. For each point a tuple of RSS
values is produced, and is stored in a learning database. Once the
learning phase is completed, the system enters the localisation pro-
cedure, when every time a new RSS tuple is produced, the SVM uses
information learned from the tuples stored in the database to classify
it, that is to find the most likely position of the user.

An SVM method needs R training configurations ∆,

∆ = {(Γ,xm, vm)r, r = 1 . . . R}

given by the set of differential measurements Γ, a random position
xm with the associated state

vm =

{

1 if the target is in xm

−1 otherwise.
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(a) Path 1 (b) Path 2 (c) Path 3

Fig. 3: Paths walked by the target user

During the training phase, the training set is used to find a suitable
decision function Φ by means of an SVM strategy [26, 27]. Assum-
ing that the localisation area is a lattice with C squared cells, the
authors define the decision function for the given cell c by

Φ(Γ, vc) =
C
∑

p=1

R
∑

r=1

{

αr
cv

r
cΘ(Γ(r),Γ(p), p, c)

}

+

C
∑

p=1

Rsv
∑

r=1







vrc −
C
∑

p=1

R
∑

r=1

{

αr
cΘ(Γ(r),Γ(p), p, c)

}







Rsv

where Θ(·) is the kernel function adopted for the problem addressed,
the α values are the Lagrange multipliers of the optimisation prob-
lem associated with the SVM problem, and Rsv is the support
vector, i.e. the set of training data where the Lagrangian multipli-
ers for the cell c are not equal to zero. Reference [28] provides an
in-depth analysis of the problem. Through the decision function,
the classification problem can be defined as a binary classification
problem.

Note that the sign of the decision function can be replaced by
the posterior probability Pr{v = 1|Γ} [29] to construct a location-
probability map of the monitored area. The posterior probability
gives information about the degree of membership of test data to
a particular class, even if sign[Φ(Γ)] does not correctly classify
the input pattern. This behaviour is mainly due to the generalisa-
tion capabilities of the SVM approach that, in presence of highly
non-separable data, constructs the best separating hyperplane even
if the optimal solution to the optimisation problem [27] does not
exists. In this way, the input test data could belong to the wrong
half-plane identified by the decision function. However, taking into
consideration the posterior probability it is still possible to compute
the distance of that example to each class.

The mapping between the state information and the posterior
probability can be provided by

Pr{vc = 1|Γ} =
1

1 + exp {γΦ(Γ, vc) + δ}

where γ and δ are obtained by resolving the optimisation problem of
a cost function of the training data set, as shown in [28].

Finally the estimated target position is obtained as

x̂ =

C
∑

c=1

xPr{vc = 1|Γ}

C
∑

c=1

Pr{vc = 1|Γ}

ŷ =

C
∑

c=1

yPr{vc = 1|Γ}

C
∑

c=1

Pr{vc = 1|Γ}

4.2 Radio tomography method

In [6] and [4] the authors discuss the application of tomography to
a wireless sensor network, calling this method Radio Tomographic
Imaging (RTI). The idea behind the RTI method is that the tar-
get modifies the RSS field in a way that depends on his locations;
RTI approaches, therefore, exploit the RSS measurements observed
along the peer-to-peer links to obtain an image reconstruction of the
object position.

In [6] the authors describe how to localise a target through the
estimation of the mean RSS (SRTI), while in [25] they improve the
algorithm performance by exploiting the RSS variance (VRTI) expe-
rienced during target movements. Both algorithms are here evaluated
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Fig. 4: Pixels affected by RSS changes due to an intervening body
along the line of sight between transmitting and receiving node.

exploiting RSS measurements performed on multiple channels (i.e.
frequencies) as described in [4].

The network area is conventionally divided into pixels, so the
movement of the user is discretised on the pixel set.

The problem is to find a mapping that links the measured RSS
per link to the RSS per pixel. The authors adopt a very simple linear
model

s = W spx + n (1)

where spx ∈ R
P is the RTI over the pixel set, so spxi is the value

of RSS for the i− th pixel, s ∈ R
L is the vector of the measured

value of RSS over the set of links, n ∈ R
L is the noise of the mea-

sures, and finally W ∈ R
LxP is the mapping matrix whose entries

are the weights that link the pixel values to the link values of RSS.
The weights of the mapping matrix W can be calculated assuming

that the power of the received signal is proportional to the inverse of
the squared distance covered by the signal, and that the target cross-
ing a link (ai, aj) influences a set of pixels. Precisely, the authors
assume that the set of influenced pixels fall within the area limited
by an ellipse. Hence, for the weights of the matrix W the following
equation is applied:

wij =
1√
LoS

{

φ if d1ij + d2ij < LoS + λ
0 otherwise

where LoS is the distance of the line of sight between two nodes, d1ij
and d2ij are the distances from the centre of pixel j to the two node
locations for link i, and λ is a tunable parameter describing the width
of the ellipse. The parameter λ is typically set in the range from
0.1 to 0.6 m. The ellipse is primarily used to simplify the process
of determining which pixels fall along the LoS (line of sight) path,
as shown in figure 4, where grey pixels represent a person’s body.
Finally, the parameter φ is a scaling factor used to normalise the

RTI, whose typical values are between 1 and 100 dB2.
The model estimation of the values of RSS as a function of pixel

in the equation (1) provides a mathematical framework to relate the
target’s movement in space to the RSS values per link. The model
is an ill-posed inverse problem, that is, it is highly sensitive to mea-
surement and modelling noise. The solution spx can be calculated by
the least-squares approach, but the solution can not be unique, hence
a regularisation method [30] must be applied to obtain the solution.
The method proposed by the authors propose is Tikhonov’s regulari-
sation. Using Tikhonov’s method the least-squares problem is solved

by

ŝpx = argmin
spx

1

2
||W spx − s||2 + α||Qspx||

where Q is the Tikhonov’s matrix that produces the solution with
the desired properties, and α is a tunable regularisation parameter.
To calculate the parameter α many algorithms have been developed
[31]. The least-squares problem solution is

ŝpx = (W ′W + αQ′Q)−1W ′
s. (2)

As stated above, the matrix Q captures some features of the mea-
sured acquired. Taking into account the covariance matrix C as well

as the variance σ2
N of the noise process linked to the measures, the

solution of equation (2) can be calculated as

ŝpx = (W ′W + σ2
NC−1)−1W ′

s. (3)

The entries cij of the covariance matrix C can be calculated
assuming that the spatial attenuation of the field decays exponen-
tially [4]

cij = σ2exp

(

−dij
δc

)

where dij is the distance between centres of pixels i and j, σ2 is the
variance of pixel attenuation, and δc is a correlation parameter that
can be used to determine the desired amount of smoothness in the
image. The target’s coordinates x = [x y] are the coordinates of the
maximum value in the vector ŝpx calculated by the regularisation
method.

As stated above the authors propose two versions of the RTI-based
algorithm, the first one evaluates RSS differences from the base situ-
ation, that is the RSS shadowing due to the target, and the second one
evaluate the RSS variance. The solution shown in the equation (3)
works in both cases, in fact, the only difference between two meth-
ods is how the entries of the vector s are evaluated. In the following
we provide the descriptions of the ss entries calculation.

When using the Shadow-based method, for every link l, and every
channel c ∈ Ch, average values of measured RSS values {RSSlc}
is computed when no target moves within the localisation area, this
time is named calibration period. The method uses the RSSlc val-
ues as a measure of the fade level following this rule: if RSSlc1 <
RSSlc2 then the link l is in a deeper fade in channel c1 than in c2.

For each link l the RSSlc values are sorted for all channels of the
set C. Finally, the method creates a set C of size m containing the
indices of the m highest channels by fade level, and then evaluates
shadowing, that is the s entries as the mean values of the differences
between the current measured RSS vales and the {RSSlc}, over the
m highest channels by fade level.

For the Variance-based method the entries are the variances of the
measured RSS values, and no calibration phase is needed.

In our experiments, variance is computed in a moving window
whose length depends on the token speed, which is turn depends on
the total numbers of anchors: from 264 ms in the case of 16 anchors
to 408 ms for 24 anchors.

In [25], the authors describe an RTI-based tracking algorithm
developed by filtering the estimated target positions through the
Kalman filter defined as

V̂ = V + σ2
mI2;

G = V̂ (V̂ + σ2
nI2)

−1

x̂ = x̂+G(x− x̂)

V = (I2 −G)V̂

where I2 is the 2× 2 identity matrix, σ2
m is the variance of the

targets motion process, indicating how fast the object is capable
of moving. Larger values enable the filter to track faster moving

objects. The authors also take into account σ2
n that is the variance

of the measurement noise. Larger values will cause the filter to
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Fig. 5: Error in metres for three algorithms over the 211 positions.
The three coloured lines represent different repetitions of the same
experiment.

trust more the statistical predictions over the instantaneous measure-
ments. The vector x̂ contains the Kalman estimated coordinates x
and y. x is a two-element vector containing the instantaneous mea-

surement of the target coordinates through the RTI method. V̂ is the
a priori error covariance matrix and V is the posterior error covari-
ance matrix and finally G the Kalman Gain. The authors provide
some values for these parameters through a set of measurements
performed during their experiments.

5 Results and discussion

We made a total of 3 measurements, with 24, 20 and 16 anchors
hanging from the walls. Each measurement, as detailed previously,
consisted of 3 repetitions of 211 positions, for a total of 633 sam-
ples on each of which the positioning error was computed. While
the total amount of samples is small in a statistical sense, in the
following we are going to explain why we think our results are
credible.

We define a total of nine situations, each relative to one of the
three measurements (24, 20 and 16 anchors) for each of the three
algorithms we have used, that is an SVM classifier (CLAS), the
shadow-based radio tomographic imaging (SRTI) and the variance-
based one (VRTI). This way, we can make a comparison of the
relative accuracy performance of the three algorithms with different
number of anchors.

Each measurement was repeated three times, both for obtaining
a higher number of error samples and making statistics more reli-
able, and for being able to make a direct comparison between the

repetitions along all the 211 positions of the path. Each of the three
plots of figure 5 shows a different-coloured line for each of the three
repetitions: the three superimposed lines exhibit clear indications of
statistical noise and a strong spatial correlation between them, that
is, between repetitions. We consider this spatial correlation a good
indication of the robustness of the experimental procedure. Addition-
ally, to a lesser extent, we can observe spatial correlation also among
the different algorithms, suggesting that in the specific anchor con-
figuration used in this measurement some positions points provide
low-quality information. The fact that in many instances this trans-
lates in poor performance for all the three algorithms is an additional
indication of the robustness of the experimental procedure.

The three measurements and the three repetitions were done in
a completely independent way, at time distances of some hours to
some days.

5.1 Overall comparison of the three algorithms

In figure 6 we show the error distributions for the nine situations.
For easier comparison, the distributions are overlaid with four per-
formance indicators, namely the root of mean square (RMS) error

and the 50th, 75th and 90th percentiles of errors.

From a practical standpoint, the 75th percentile is the most use-
ful estimator, and indeed it is the one that has been used in the
indoor localisation track of the EvAAL competition [32]. The 90th

percentile is useful to get an idea of the length of the tail of the
error distribution, while the median and RMS errors are useful for
comparison with statistics found in the literature.

It is apparent from figure 6 how CLAS outperforms the
tomography-based methods in terms of pure error performance. This
was to be expected, given given that CLAS is classification-based,
and it exploits prior knowledge that is not available to the other algo-
rithms. This knowledge comes at a significant cost both in terms of
installation and of flexibility. More specifically, the training phase
requires non-negligible time to be performed by a person following
a rigid protocol, and a new training is required for any non-trivial
change in the environment, such as a rearrangement of furniture.
This is not something that is reasonably done by the end user,
and probably rules out the usage of this system for some typical
scenarios. For installation in private homes (common in AAL sce-
narios), the intervention of a technician would be required every time
that furniture is reallocated. Even in places where technicians are
promptly available, the required intervention rate could turn out to be
prohibitive in dynamic environments, such as hospitals or industrial
locations, where furniture can be expected to be routinely moved
around. The time required for CLAS training by a qualified techni-
cian is about 5 s per cell, with squared cells of edge 0.6 metres, for

an overall 8 s/m2 plus overhead for setup and testing.
SRTI has the worst error performance. On the other hand, it

needs a calibration phase which is much quicker than the training
needed by CLAS and which can be completely automated, requir-
ing no human intervention. In practice, when the system senses
no motion in the environment for some time, it can autonomously
initiate a recalibration procedure that lasts for a few minutes, and
is automatically cancelled if any movement is detected in the
meantime.

VRTI is midway. It does not need any training phase, because it
is not sensitive to unmoving obstacles, and as such it is insensitive to
changes in the environment. This strength is also its main weakness:
being based on signal strength variations, it performs badly when
the target does not move. Note, however, that here we are measuring
the performance of the raw system: by adding a tracking layer with
memory, such as a Kalman filter or a particle filter, we can expect
performance to improve significantly with non-moving targets.

Table 1 summarises the main characteristics of the three algo-

rithms; accuracy is the 75th percentile of error in the 24-anchors
measurement, which we consider the most appropriate metrics for
an experimental localisation algorithm.

The CLAS algorithm gives a higher accuracy than the others,
however it requires an expensive calibration procedure making it not
ideal for the application scenarios typical of the AAL domain. When
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Table 1 Functional comparison of the three algorithms.

Performance indicator SRTI VRTI CLAS

Accuracy 1.9 m 1.5 m 1.2 m
Configuration automated unneeded expensive
Still target detected undetected detected
Flexibility yes yes no
Reference scenario AAL, industrial,

intrusion, hospital
same as SRTI specific applications

changes in the localisation area are sporadic, the CLAS algorithm
can be adopted. However, in these cases, when installing additional
anchor devices is tolerable, other device-free technologies (such
as infrared, ultra-wideband, cameras etc...) are good candidates,
especially because they require few anchors and can provide high
accuracy.

On the other hand, SRTI and VRTI algorithms fit best in many
scenarios where the targets move often and where the localisation
application does not demand high accuracy.

For all the algorithms, the accuracy of the estimation increases
with the number of anchors, but it is still in the usable range with as
few as 16 anchors. This observation is an interesting result because,
to the best of our knowledge, up to now the literature lacks studies on
the influence of the placement and number of anchors on the accu-
racy of the device-free methods based on RSS which are the focus of
this paper. In the next section we examine this topic in deeper detail.

5.2 Dependence on the number of anchors

While the data shown so far seem to indicate that dependency of the
accuracy from the number of anchors is consistent, it is important to
note that placement of anchors can have a significant effect, which

is difficult to gauge. The reason is that, even for a single environ-
ment, the space of possible placements of a fixed number of anchors
is huge, and it is not clear how to experimentally choose a meaning-
ful part of this space. We have then exploited the fact that, for each
measurement, considering a subset of the anchors effectively creates
a new configuration of anchor placements.

For each of the three measurements, we remove the data relative
to progressively more anchors. For example, we compare the per-
formance of the three algorithms with 24 anchors with that obtained
when one anchor is ignored, that is, with a 23-anchors configura-
tion. There are 23 possible such configurations, one anchor being
the sync and as such not possibly being ignored. Analogously, by
ignoring two anchors, we can compute what is the performance in
a given situation with a 22-anchors configuration: there are 232̇2/2
possible such configurations.

Using this trick, we can obtain the performance of the system with
progressively fewer anchors. Moreover, since there are many subsets
of 24 anchors, we also obtain an interval of performance values for
the same number of anchors, corresponding to many different anchor
placement configurations.

Note that this procedure is conservative as far as the localisation
performance is concerned. In fact, starting from a 24-anchors config-
uration and ignoring the output of 8 anchors is the same as starting
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Fig. 6: Distribution of errors in the nine situations with superimposed statistics of RMS error and 50th, 75th and 90th error percentiles.
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Fig. 7: Error performance (75th percentile of error) for 10111 differ-
ent anchor configurations. A variable number of anchors is ignored
starting from the 24-anchors measurement. The red and blue dots
represent the 20- and 16-anchors measurements.

Table 2 Number of anchor

configurations for the VRTI

case with 24 initial anchors.

Anchors Configurations

24 1
23 23
22 253
21 286
20 495
19 792
18 924
17 330
16 1287
15 220
14 900
13 900
12 900
11 700
10 700
9 700
8 700

from the remaining 16 anchors. However, one should remember that
the experimentation uses a token-passing protocol, and the speed at
which the token completes a cycle is lower in the 24-anchor situa-
tion with respect to a 16-anchor configuration. This means that in
the first case the localisation algorithm will profit from a lower num-
ber of samples, which justifies the observation that our procedure is
conservative, at least in principle.

As an initial example, let’s use the VRTI algorithm in the 24-

anchors measurement. We use the 75th percentile of error as a
performance measure. In figure 7 we depict the performance of a
total of 10111 different anchor configurations chosen from all the
possible configurations of 24 anchors with some of them disabled,
as detailed in table 2. We have not considered all possible configu-
rations, because of computing power constraints and because many
of them do not make sense. In fact, we use the whole sets for the
24, 23 and 22 cases, while for the remaining cases we only consid-
ered those configurations where the anchors removed from the initial
set of 24 were not too near to each other. For configurations with
less than 15 anchors, among the candidate reasonable configurations
we randomly picked a fixed number, for computation performance
reasons. The figure shows different shaded regions separated from
percentiles lines of 0, 3, 10, 25, 75, 90, 97, 100, thus summarising
the performance of all the considered configurations, where again

the performance measure is the 75th percentile of error, which we
consider the most significant and robust [32].

Figure 7 is interesting in a number of ways. First of all, consider
the inner area, the darkest one which starts with the vertex at 24
anchors and grows progressively wider with diminishing number of
anchors. This is the area where 50% of cases fall. This means that,
when removing anchors from the whole 24-anchors configuration,

in half of cases the 75th percentile of error is inside this area. Notice
how the area gently slopes towards greater errors with diminishing
number of anchors: this is a very strong indication that the VRTI
method behaves smoothly when reducing the number of anchors
from the high figures usually found in the literature, meaning that
with this method it is possible to consider trade offs between local-
isation accuracy and number of installed devices. This is the most
important finding of this paper.

Second, the results are consistent within the experiment: look-
ing at the lightest areas on top, one sees that significant deviations
from the most common performance measure are found in only 3%
or 10% of cases. This means that in the vast majority of cases, the
way the anchors are placed in the environment is not that important,
assuming that one does not install devices in bunches. This is the
second most important finding of this paper.

Third, the regular shape of the plot is one more confirmation of
the robustness of our measurement method. A further confirmation
is given by the position of the red and blue dots, which represent the

75th percentile of error of the VRTI measurements with 20 and 16
anchors respectively. Since the results represented by the red and
blue dots are relative to different experiments, made at different
times with different device positions, having them inside the areas
including 80% and 50% of configurations, respectively, means that
not only the computation method is consistent within data from an
experiment, but even across experiments.

Having examined in detail the configurations stemming from
VRTI in a single measurement, we can comment figure 8, where a
single picture summarises the performance of all the configurations
stemming from the three algorithms in the three measurements. The
same observations as above apply here for each of the nine plots and
each of the three coloured areas the plots. The areas are delimited by

the 10th and 90th percentiles of the performance measure; in other
words, in 80% of the anchor configurations, the performance mea-

sure (75th percentile, root mean square or 90th of error) falls inside
the coloured area. Note that the vertical scale is not the same for all
algorithms.

Figure 8 shows that in almost all cases the measurement obtained
in the 20-anchors measurement (vertex of the pink area) falls within
the cyan area, and the measurement for the 16-anchors measurement
(vertex of the violet area) falls within both other areas. The excep-

tions are all for 90th percentile error performance measure, which is
not as robust as the two other ones. This observation is still a con-
firmation of the good consistency of our measurements and of our
procedure of removing anchors to produce new configurations with
a variable number of anchors.

Even more interesting is the fact that the graceful degradation
of performance with diminishing number of anchors that we had
observed in figure 7 can be observed in all situations, with the partial
exception of the CLAS algorithms. This brings us to two important

results: for all performance measures (75th percentile, root mean

square and 90th of error), all three algorithms can 1) be used with
smaller numbers of anchors than normally used in the literature,
at the price of a gradual loss of accuracy, and 2) all three algo-
rithms are relatively insensitive to the positioning of anchors in the
environment.

The strange zigzag behaviour of the CLAS method observed in
figure 8 should probably be attributed to peculiarities of the paths
2 and 3. In fact, when considering only Path 1, the behaviour is
much more regular for all performance measures, as shown in figure

9 for the 75th percentile of error. CLAS, being a classification-based
algorithm is also strongly non-linear, more so than the tomography-
based ones. This may explain both the irregular behaviour and the
increased loss of performance with less than 12 anchors.
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6 Conclusion and open research problems

We have compared three RSS-based device-free indoor localisation
methods belonging to two different families and we have com-
pared their relative merits in a realistic environment through rigorous
experimentation.

We have presented three novel results: first, these methods can
be used with much less transmitters than normally found in the lit-
erature, which makes them a possibly good choice in a future IoT
pervasive scenario.

Second, these methods degrade their performance gracefully with
diminishing number of sensors, which makes it possible to trade
accuracy for number of active devices. This characteristic too makes
them a palatable choice for a scenario where small, low-power, ubiq-
uitous devices can be used, at no hardware or installation cost, as an
indoor localisation infrastructure.

Third, the systems that we have considered are largely insensitive
to the exact positioning of devices in the environment, as long as
they are not installed in bunches.

In order for these methods to be in fact usable in a pervasive IoT
scenario, the next step is to verify what is the performance in the case
of intermittent operation of heterogeneous transmitters. In fact, the
“parasitic” usage of IoT transmissions implies that the methods need
to work with a possibly high number of different-technology devices,
each transmitting with a generally low or very low duty cycle.

Furthermore, while the computing power required from the
devices is indeed very low at transmission time, they however need
to listen to other devices’ transmission, which is power-hungry. No
obvious solutions to this problem exist, but many avenues could
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be investigated, for example some form of passive listening or
transmission synchronisation.

Acknowledgment

This work was supported by Regione Toscana under the European
Union research funding program POR CRO FSE 2007-2013 and
by the project “Energia da fonti rinnovabili e ICT per la sosteni-
bilità energetica; sottoprogetto Smart Building” of the DIITET
Department of CNR.

7 References

1 Dohr, A., Modre.Opsrian, R., Drobics, M., Hayn, D., Schreier, G. ‘The internet of

things for ambient assisted living’. In: Information Technology: New Generations

(ITNG), 2010 Seventh International Conference on. (, 2010. pp. 804–809

2 Wu, P., Wu, X., Chen, G., Shan, M., Zhu, X.: ‘A few bits are enough: Energy

efficient device-free localization’, Computer Communications, 2016, 83, pp. 72 –

80

3 Wu, P., Chen, G., Zhu, X., Wu, X.: ‘Minimizing receivers under link coverage

model for device-free surveillance’, Computer Communications, 2015, 63, pp. 53

– 64

4 Ossi, K., Bocca, M., Patwari, N. ‘Enhancing the accuracy of radio tomographic

imaging using channel diversity’. In: IEEE Int. Conf. MASS. (Las Vegas, Nv,

2012. pp. 1–9

5 Viani, F., Martinelli, M., Ioriatti, L., Benedetti, M., Massa, A. ‘Passive real-

time localization through wireless sensor networks’. In: Proc. IEEE Intl. Conf.

IGARSS. (Cape Town, South Africa, 2009. pp. 718–721

6 J. Wilson and N. Patwari: ‘Radio Tomographic Imaging with Wireless Networks’,

IEEE Transaction on Mobile Computing, 2010, 9, (5), pp. 621–632

7 Cassarà, P., Potortì, F., Barsocchi, P., Girolami, M. ‘Choosing an RSS device-

free localization algorithm for ambient assisted living’. In: proceedings of the

International Conference on Indoor Positioning and Indoor Navigation (IPIN). (,

2015.

8 Valtonen, M., Maentausta, J., Vanhala, J. ‘Tiletrack: Capacitive human tracking

using floor tiles’. In: Pervasive Computing and Communications, 2009. PerCom

2009. IEEE International Conference on. (, 2009. pp. 1–10

9 Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., Shafer, S. ‘Multi-camera

multi-person tracking for easyliving’. In: Visual Surveillance, 2000. Proceedings.

Third IEEE International Workshop on. (, 2000. pp. 3–10

10 Patel, S.N., Reynolds, M.S., Gregory.D..Abowd", J. editor="Indulska, Patterson,

D.J., Rodden, T., Ott, M. In: ‘Detecting human movement by differential air pres-

sure sensing in hvac system ductwork: An exploration in infrastructure mediated

sensing’. (Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. pp. 1–18

11 Barsocchi, P., Potortì, F., Nepa, P. ‘Device-free indoor localization for aal appli-

cations’. In: International Conference on Wireless Mobile Communication and

Healthcare. (Springer, 2012. pp. 361–368

12 Fink, A., Beikirch, H. ‘Device-free localization using redundant 2.4 GHz radio

signal strength readings’. In: Indoor Positioning and Indoor Navigation (IPIN),

2013 International Conference on. (, 2013. pp. 1–7

13 Savazzi, S., Nicoli, M., Carminati, F., Riva, M.: ‘A bayesian approach to device-

free localization: modeling and experimental assessment’, IEEE Journal of

Selected Topics in Signal Processing, 2014, 8, (1), pp. 16–29

14 Savazzi, S., Nicoli, M., Riva, M. ‘Radio imaging by cooperative wireless network:

Localization algorithms and experiments’. In: Proc. IEEE Intl. Conf. WCNC.

(Paris, France, 2012. pp. 1–5

15 C. Morelli, M. Nicolini, V. Rampa, and U. Spagnolini: ‘Hidden Markov Models

for Radio Localization in Mixed LOS/NLOS Conditions’, IEEE Transaction on

Signal Processing, 2007, 5, (4), pp. 1525–1542

16 Wagner, B., Striebing, B., Timmermann, D. ‘A system for live localization in smart

environments’. In: Proc. IEEE Intl. Conf. ICNSC. (Evry, France, 2013. pp. 684–

689

17 Wagner, B., Patwari, N., Timmermann, D. ‘Passive rfid tomographic imaging

for device-free user localization’. In: Proc. IEEE Intl. Conf. WPNC. (Dresden,

Germany, 2012. pp. 120–125

18 Nannuru, S., Li, Y., Zeng, Y., Coates, M., Yang, B.: ‘Radio-frequency tomography

for passive indoor multitarget tracking’, IEEE Transactions on Mobile Computing,

2013, 12, (12), pp. 2322–2333

19 Wang, J., Gao, Q., Yu, Y., Cheng, P., Wu, L., Wang, H.: ‘Robust device-free wire-

less localization based on differential rss measurements’, IEEE Transactions on

Industrial Electronics, 2013, 60, (12), pp. 5943–5952

20 Men, A., Xue, J., Liu, J., Xu, T., Zheng, Y. ‘Applying background learning algo-

rithms to radio tomographic imaging’. In: Proc. IEEE Intl. Conf. WPMC. (Atlantic

City, NJ, 2013. pp. 1–5

21 Maas, D., Wilson, J., Patwari, N. ‘Toward a rapidly deployable radio tomographic

imaging system for tactical operations’. In: Proc. IEEE Intl. Workshop SenseApp.

(Sydney, Australia, 2013. pp. 1–8

22 Zhao, Y., Patwari, N., Suresh, J.M.P. ‘Radio tomographic imaging and tracking

of stationary radio tomographic imaging and tracking of stationary and mov-

ing people via kernel distance’. In: Proc. ACM Intl. Conf. IPSN. (Philadelphia,

Pennsylvania, USA, 2013. pp. 1–12

23 Crossbow Technology. ‘IRIS Datasheet’. (, 2013. http://bullseye.xbow.

com:81/Products/productdetails.aspx?sid=264

24 Wilson, J., Patwari, N.. ‘Spin: A token ring protocol for RSS collection’. (, .

http://span.ece.utah.edu/spin

25 Wilson, J., Patwari, N.: ‘See-through walls: Motion tracking using variance-based

radio tomography networks’, Mobile Computing, IEEE Transactions on, 2011, 10,

(5), pp. 612–621

26 Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: ‘Numerical

Recipes’. (Cambridge University Press, 2007)

27 Vapnik, V.: ‘Statistical Learning Theory’. (New York: Wiley, 1998)

28 A. Massa, A. Boni and M. Donelli: ‘A Classification Approach Based on SVM

for Electromagnetic Subsurface Sensing’, IEEE Tran On Geoscience and Remote

Sensing, 2005, 43, (9), pp. 2084–2093

29 Platt, J.: ‘Probabilistic outputs for support vector machines and comparison to

regularized likelihood methods’. (Cambridge, MA: Advances in large margin

Classifiers, MIT Press, 1999)

30 Wilson, J., Patwari, N., Vasquez, F.G. ‘Regularization methods for radio tomo-

graphic imaging’. In: Proc. Virginia Tech Wireless Symposium. (Virginia, USA,

2009. pp. 1–9

31 Engl, H.W., Hanke, M., Neubauer, A.: ‘Regularization of Inverse Problems’.

(SPRINGER, 2004)

32 Barsocchi, P., Chessa, S., Furfari, F., Potortì, F.: ‘Evaluating AAL solutions

through competitive benchmarking: the localization competition’, IEEE Pervasive

Computing Magazine, 2013, 12, (4), pp. 72–79

IET Research Journals, pp. 1–10

10 c© The Institution of Engineering and Technology 2015


