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Abstract

Exchanging simulation data among simulation practitioners is to a great extent hindered by

the use of different kinds of data formats in simulation software packages. The purpose of the

CostGlue  project  is  to  facilitate  the  exchange  of  simulation  data  in  the  field  of

telecommunications.  We propose a common data interchange format  and a data exchange

model for raw simulation data, metadata and post-processing data. Based on this model, we

additionally propose a framework, CostGlue, designed for packaging simulation output data

into the common interchange format,  launching post-processing plugins and exporting data

into input formats for various third party tools. As a proof of concept we have implemented

the framework as a software package and released it as free software.

1. Introduction

Due to the complexity, size and heterogeneity of telecommunication networks, simulation

represents an indispensable, universal and cost efficient approach to the development of new

networks and consequently to the development of new services and applications. A number of

simulators are currently in use for this purpose. Information about the behavior and operation

of  a  modeled system is  gathered  from the  simulation  data,  i.e.,  the  output  of  individual

simulation programs. A common simulation data exchange format is required to facilitate the

sharing of this information. At present, simulation data exchange is to a great extent hindered

by many different data formats used in simulation software packages.  This topic has been

addressed  within  the  framework  of  the  European  COST  285  Action  "Modeling and



Simulation Tools for Research in Emerging Multi-service Telecommunications" [1], a forum

where  European  researchers  periodically  meet  to  address  issues  related  to  simulation  of

communications systems. COST 285 observed that no general solution exists for exchanging

big quantities of simulation data from different sources and in different formats. The need was

expressed both for a common format for exchanging data, and for transforming this data for

use with different data analysis tools, each requiring a different input format.

Conversion  between  different  tools  for  simulation  data  analysis  generally  requires  a

conversion program for  each pair  of  formats  [2].  This means that  a  total  of  ( 1) / 2N N −

different conversion programs are needed,  when  N different formats are used. A common

interchange  format  would simplify data exchange:  the number of conversions required to

share the data reduces from ( 1) / 2N N −  to N, as only one conversion tool is needed for each

format.

The process of delivering valuable information about the simulated environment involves

several activities such as modeling and simulation, analysis and presentation of simulation

results,  which  are  generally  performed  by  several  different  independent  applications.  We

define  a  reference  model  of  the  process  involving  data  collection,  simulation  and  result

analysis, in order to provide a general and systematic overview of the simulation procedure.

Following the reference model,  this paper  describes the project CostGlue [3],  which is

intended  to  facilitate  simulation  data  exchange.  The  project  includes  the  CostGlue  data

exchange model, the  metadata XML description, the  CostGlue framework, and a  prototype

implementation. We propose a data exchange model as an abstract model that describes how

data is represented and used. The model considers three types of data: raw simulation data,

metadata and post-processing data. Special attention is given to the latter two, whose structure

is based on the Open Archival Information System (OAIS) reference model [4], modified

with a more detailed description of simulation data collection related to telecommunications.

All three types of data are stored in an archive based on the common data interchange format.

When dealing with a large number of archives, it is possible to aggregate them in catalogues

to  be  published  in  repositories  for  scientific  communities.  For  this  reason,  we  use  the

taxonomy from the Council for the Central Laboratory of the Research Councils (CCLRC)

Scientific  Metadata  Model  (CSMD)  [5].  The  CostGlue  prototype,  which  implements  this

CostGlue framework,  is  able to  package simulation output  data into the common format,

launch post-processing plugins and export data into various formats. The framework consists

of a core, a database, an API (Application Programming Interface), and an arbitrary number



of specialized plugins. The core is the sole responsible for accessing the database. Specific

functions,  such  as  import  and export  of  data  and  different  mathematical  calculations,  are

provided by self-describing plugins,  which are loaded on demand. The plugins access the

database by interacting with the core through a well-defined API. The prototype CostGlue

software package should be viewed as a proof of concept of the feasibility of the proposed

data exchange model and the framework. Since measurements and simulation data have very

similar format, they can be stored into a common database, which allows easy comparison, a

valuable feature in the process of modeling and simulation [6].

The paper is organized as follows. In Section 2 we provide a brief overview of the related

work.  The simulation process  model  is  described in  Section 3.  It  is  followed  by  a  short

discussion of the simulation tools and data formats in Section 4. The CostGlue data exchange

model and the metadata XML description are presented in Section 5 and the accompanying

CostGlue  framework  with  available  plugins  is  presented  in  Section  6.  Some  concluding

remarks are given in Section 7. 

2. Related work

To the best of our knowledge, no general solution for simulation data exchange exists in

the field of telecommunications.  However,  there are some relevant examples that partially

address the idea of simulation data exchange among researchers.  Starting with those most

related to the field of telecommunications, several online catalogues with measurement data

for  different  types  of  telecommunication  networks  are  available.  One  of  them  is  the

Community  Resource  for  Archiving  Wireless  Data  At  Dartmouth  (CRAWDAD)  [7],  a

wireless network data resource for the research community. It hosts several data sets in the

form of trace files (snmp, tcpdump, syslog, etc.) in different data formats. The data sets are

accompanied  by  several  analysis  tools.  In  addition,  the  CRAWDAD  archive  contains

metadata with the description of CRAWDAD data,  tools, related papers and their authors.

Despite the efforts of the CRAWDAD community, the diversity of different file formats and

tools for each format still hinders data exchange among the researchers. 

Multilayer  Network  Description  (MND)  [8]  aims  to  assist  multilayer  modeling  by

improving the data interchange between various tools.  This is accomplished by defining a

generic data structure for the multilayer environment which is also present in communication

networks. It uses eXtensible Markup Language (XML) to increase flexibility and to improve

the visibility of relevant data. The drawback of the MND is that it represents only one of the

many  possible  descriptions  of  a  simulated  environment,  therefore  not  enabling  general



applicability  in  all  of  the  simulated  environments  relevant  to  the  domain  of

telecommunications.

A software tool called DataSpork [9] developed at the University of Illinois comes from a

different research area. It is distributed as a part of the Material Computing Center software

archive.  DataSpork was designed in order to perform statistical  analyses common to most

simulation methods, as well as to allow for an extension to other data types and analysis tasks.

Although it is a  standalone tool,  its development  is  a part of an overall effort to improve

storage and exchange of simulation data in the area of Materials Computation. It enables the

creation of new data readers, which means that the data can be imported from any kind of data

source as long as the necessary extensions are developed. This tool has no capability of data

export,  multidimensional  data  layout  abstraction,  flexible  data  viewing  or  support  for

structured metadata.

The American Institute of Aeronautics and Astronautics (AIAA) Modeling and Simulation

Technical Committee has proposed a standard [10] for the interchange of simulation modeling

data of a  vehicle or an aircraft between different simulation facilities.  The purpose of the

standard is to maximize the efficiency of data models exchange by providing a well-defined

set of information, definitions, data tables and axis systems. The standard is implemented in

XML. Unfortunately, the descriptions of models within the XML files are specific to the field

of aeronautics and can not be used in the field of telecommunications.

The CCLRC e-Science  Centre has developed a framework, called AgentX [11],  which

allows simple and automated exchange of information between components of a scientific

workflow. The AgentX framework is being used in the eMinerals project [11], which focuses

on studying environmental  processes at  the molecular level  by using a range of atomistic

simulation tools. From this project we borrowed CSMD, the taxonomy developed by CCLRC

for aggregating the archives into catalogues.

3. Simulation process model

In order to obtain a general and systematic overview of creation, flow and processing of

data,  we  define  a  reference  simulation  process  model.  The  model  provides  a  layered

decomposition of the main functions encountered in both the simulation and measurement

processes. This three layered model with one optional sub-layer is shown in Fig. 1.

The first layer - source layer - provides the raw simulation output, describing a simulation

run to the smallest detail. Raw data is generated by a simulator: usually, one or more records

are created for each event during the simulation run at the source layer. The structure and



format of the data at this point depends entirely on the simulator (e.g., ns-2, Opnet). Most

frequently data is in the form of large tabular traces, in ASCII or binary format. An optional

source recoding sub-layer handles the raw source data. Its main purpose is to convert between

different formats (e.g.  from ASCII  to  binary or  vice versa),  to compress data (e.g., Gzip,

Bzip2) and to  remove private information (e.g.  header  lines)  from simulation traces.  The

source layer supports both raw simulation data and real measurements data. In fact, during our

research, we found that nearly the same model can be applied to the analysis of real network

traffic traces. In this case the raw data is not a result of simulation, but rather, for example, the

data traces captured in a network link. Apart from the different tool that generates the raw

data (traffic capture tools like Tcpdump or Ethereal instead of a simulator) all the functions of

the upper layers remain the same.

Figure 1: a reference model of a simulation process.

The  processing  layer is  responsible  for  the  analysis  of  simulation data.  At  this  level,

cumulative results  can be derived  from the raw data (e.g.  the mean packet  delay can be

calculated). It is possible to determine the statistical confidence of the results and to conduct

additional simulation runs if  necessary.  An important characteristic  of the data processing

layer is that the amount of data received from the source layer is usually much larger than the

amount of results of post-processing.

The presentation layer is the final stage where the results are organized in a form useful for

exchanging the most  important  findings with other simulation practitioners.  In the case of

simple tabular result printouts,  this layer  is  empty or only slightly modifies the data (e.g.

changes in number formats, column spacing). However, data is frequently shown in the form

of 2- or 3-dimensional  graphs (e.g.  as a part of scientific reports or research papers,  web

pages, etc.) or even presented in animated form (e.g. ns-2 NAM - Network AniMator). At this

layer the predominant requirement is the flexibility of presentation and a possibility to create

new  or  modified  presentation  objects  from  new  or  changed  simulation  results  without

reformatting.



We can map the functionality of particular tools used in simulation to the layers of our

model. Usually, a single tool provides more than one functional layer or even all of them. In

the most favorable situation it would encompass all the functions needed and implement them

adequately to meet all the researcher�s needs. In practice this occurs very rarely and there is

usually a set of complementary tools that covers the required scope of functions within the

model. The selection of tools is based on arbitrary conditions, such as the capabilities and

performance of the individual tools, the researcher�s past experience with a particular tool, or

the availability of tools. In the case of simulated results, raw data can be generated by discrete

event simulators (e.g., ns-2, Opnet). Raw data can be captured in real networks, with sniffers,

such as Tcpdump or Ethereal. Source recoding can be done with small dedicated tools (e.g.,

Gzip,  Tcpdpriv) or different proprietary shell scripts.  Data analysis can be performed with

generic  tools  for  mathematical  computation  (e.g.,  Octave,  Matlab,  Mathematica,  Excel),

special statistical tools (SPSS, R), or proprietary and dedicated programs or scripts. Often the

simulation package provides the functionality for data processing and analysis and it is up to

the researcher to decide whether this is adequate or an additional more powerful and flexible

tool should be used. Besides dedicated graphing or animation tools, presentation ability can be

provided in generic mathematical tools and sometimes even in the simulators themselves.

4. Simulation tools and data formats

In order to provide an overview of tools and formats generally used by telecommunications

systems practitioners, we addressed a specific questionnaire to the participants of the COST

285 project, representatives of more than ten European nations. The information we gathered

can be summarized in the following observations: 

• No single simulation tool has a dominant position. On the contrary, there is a great

variety of simulation tools in use.

• Apart from tabular data, other types of elaborate structural formats are seldom used . 

• Most of the time the data is used for statistics or graphing. Other uses such as data

mining are rare. 

• The most common method for evaluating the statistical accuracy of the simulation

data is to use independent replications:  runs with different simulation times are

combined in order to assure stationary intervals of appropriate length. An alternative

method using the equivalent correlation length obtained by a single simulation run is

seldom used.



• A single  simulation  run  produces  anywhere  from  1  MB  to  2  GB  of  data  and  a

simulation campaign requires from 1 to 100 runs. A measurement campaign requires

from 1 to 5 runs, each generating from 100 MB to 50 GB of data.

• The required storage varies from up to 1 GB for short-term storage, to anywhere from

10 MB to 10 GB and more for long-term storage.

• The employed metadata include type,  date,  parameter  values and their description,

version tracking, configurations, simulation scripts, and location. 

• The metadata is stored in different locations: coded into directory and file names, in

separate files, in different storage location inside files (e.g., under the root directory, in

shared directories), and in databases.

• Among the simulation tools which use a predefined output format, the most common

appears to be the network simulator ns-2.

• Among the generic tools for mathematical computation and running simulations,

Matlab appears to be used by most practitioners. 

• A large part  of  the simulators is  composed  by standard scripting or  programming

languages and, in general, by ad hoc simulators. 

• A great variety of tools is used for post-processing and/or graphing.

These observations, while limited in scope, show that some sort of ASCII format with tabular

data is used relatively often.

     The variety of tools and data formats used in simulations calls for a general way of reading

from and writing to different formats. For this reason we suggested a modular architecture for

the CostGlue framework.

5. CostGlue data exchange model

Most simulation data in telecommunications are basically sets of tables with numeric data.

Each simulation run generates a table with a few columns and a large number of rows. Each

table  is  associated  with  certain  parameters  specific  for  the  simulation,  and  is  uniquely

identified by the values of these parameters. We are interested in defining a database structure

that is able to efficiently accommodate this type of data.

In the next subsection a structural description of the data exchange model is  presented

together with the accompanying detailed description of the structure of metadata and post-

processing data. This is followed by an overview of data manipulation.



5.1. Structural description of the data exchange model

The  questionnaire  presented  in  the  previous  section  revealed  that,  most  commonly,

simulation data is organized into a hierarchical structure accessed via a set of parameters. This

is usually done by hierarchically organizing the directories of a file system, with raw data

usually located in the leaf directories. Each directory is named after the value of the parameter

corresponding to its depth. Generally, this means that the number of tree levels depends on the

number of different simulation parameters, and the number of directories at each tree level

depends on the number of values of the parameters.

A  more  user-friendly  method  is  to  organize  the  simulation  data  in  the  form  of  a

multidimensional  array,  where  parameter  values  are  used  as  indices  into  the  array.  By

appropriately indexing the multidimensional array, it is possible to easily extract slices of the

whole set of data. Hence the simulation parameters act as the primary interface to raw data,

which simplifies raw data querying for users. This is especially useful when the simulation

data is collected from multiple simulation runs, which is the common case. 

Fig.  2  presents  the multidimensional  structure of  the simulation data.  The rows of  the

parameter table point to data groups and datasets, where the raw simulation data, metadata

and post-processing data are stored.

Figure 2: CostGlue multidimensional structure of the data organization.

Each table,  together  with  metadata and  post-processing  data,  is  attached  to  a  data group

which  usually  holds  the  data  produced  during  a  single  simulation  run.  Data  groups  are

indexed with vectors of parameters representing an individual simulation run. The index into



the data groups is a 2-dimensional array, also referred to as the parameter table, where the

parameters  relative  to  each  data  group  are  stored.  Each  column  in  the  parameter  table

corresponds  to  a  different  parameter,  and each  row contains  the values  of  the  parameter

relative to a data group. Therefore a parameter table is used as the data structure for accessing

a data group, while an array of parameter values relative to that data group is used as the key.

A table with raw simulation data is attached to each data group.

The  overall  structure  is  a  collection  of  2-dimensional  tables  indexed  by  arrays  of  P

parameters, as shown in Fig. 2. This can be logically seen as a matrix with P+2 dimensions,

where the first P dimensions are sparse and the last 2 dimensions (P+1 and P+2) are dense.

The first  P indices are defined as parameters identifying a data group. As for the last two

indices,  the first  one represents the record (row)  number in the data group table,  and the

second one is the field (column) number of the data group table.

5.2. Metadata and post-processing data

In  recent  years  increasing  attention  has  been  devoted  to  metadata  in  all  application

domains. The XML Schema [12] provides a means for defining the structure, contents and

semantics of an XML document and is therefore widely used to collect metadata, that is, data

about data.  In order to  insert metadata we have defined a metadata XML Schema whose

document  instances  can  be  saved  together  with  the simulation data,  as  shown  in Fig.  2.

Metadata can be associated to every data group; metadata referring to the archive as a whole

is saved together with the parameter table, while metadata for a single simulation run is saved

in the related data group. Metadata can also refer to any kind of additional data, labeled as

post-processing  objects in  Fig.2.  Such  cases  are,  for  example,  the  statistics  on  the  raw

simulation data, charts, images, and any other type of data produced from or relevant to the

raw simulation data.

The metadata XML Schema is derived from the Information Model defined in the OAIS

(Open Archival Information System) reference model [4] and uses parts of the Scientific Data

Model  (CSMD)  [5].  The OAIS  reference  model  is  a  technical  recommendation  enabling

permanent or indefinite long-term preservation of digital information. The objective of the

CSMD model is to enhance interoperability of scientific information systems among research

organizations.  The  adoption  of  a  common  XML  schema  from  the  CSMD  model  could

facilitate further aggregation of telecommunication archives in catalogues to be published in

repositories for the scientific communities [7, 13].



Three main elements are present  in  the metadata  XML  Schema:  one for  the metadata

relative to the root (Study), one for the metadata relative to a data group (DataGroup), and

one that combines them together (Archive), as shown in Fig. 3. 

Figure 3: Main element of the CostGlue metadata XML Schema.

     The metadata relative to the root is stored in the root of the archive together with the

parameter table while the metadata relative to each data group is stored in the data group

together with the data table.

More details on the CostGlue XML Schema with additional pictures are available at [14].

Most of the elements in the schema are optional. The choice is motivated by the need not to

impose an excessive burden on the experimenter. However, the drawback of this choice is the

possibility to have vastly incomplete metadata. On the other hand, it is possible to envision

that a certain plugin can certify variable degrees of completeness of the metadata. This way

the repositories can accept only the archives that comply with a certain degree of metadata

completeness. 

The metadata is  separated  from the rest  of  the data allowing for  easily  describing the

complete archive.  Metadata requires little  data storage and can  also  be made  part  of  the

repositories, because metadata includes pointers to the archive location. Data group elements

can be extracted separately for efficiency and flexibility.

The metadata Schema does not include a way to serialize the archive data. This choice was

made because we see the possibility of exporting the whole archive (simulation data together

with metadata) in the XML format as a feature at a different level. Specifically, the HDF5 file

format used in the implementation of the software prototype includes the XML schema [15]

and the tool [16] to convert a whole HDF5 binary file into the XML file.

5.3. Data manipulation

The manipulation part of the data exchange model includes updating and querying the data

contained in the database. Updating the data involves importing different simulation outputs



which often have different file formats. After conversion, the raw simulation data is stored

into tables, with the user having to specify data types of the table fields.

When working with raw data in post-processing stage the idea is to take advantage of the

logical  multidimensional  data layout abstraction, where the query output is a slice of data

spanning one or more simulation runs.  Since the whole database can be seen as a sparse

matrix with P+2 dimensions the slices of data can be extracted either using selectors written

in index notation or assigning different conditions to arbitrary fields of the table. Both types

of queries produce two-dimensional arrays, which can be used for further computations or

plotting.

6. CostGlue framework

      Besides the data exchange model,  we have also designed a corresponding CostGlue

framework for simulation data exchange. The architecture of the framework, shown in Fig. 4,

consists of a core, database, API and several specialized plugins. 

Figure 4:The CostGlue framework.

The core (see Fig. 5) is responsible for reading from and writing to the database, as well as

for  the  dynamic  loading  of  the  plugins  devoted  to  different  specialized  tasks.  The  core

contains  three  different  queues:  command,  result  and  report  queue.  They  are  used  for

exchanging different types of messages with the plugins.

For the database we have chosen the HDF5 (Hierarchical Data Format) [17] as the format

to store the described data structure in Chapter 5. HDF5 consists of two primary objects -

dataset and data group. A dataset represents a multidimensional array of data elements, which

can hold different types of data. The data stored in datasets can be either homogeneous (only

one data type used within a single dataset - simple datasets) or compound (different data types



within one dataset - compound datasets). Since tabular data collected from simulators often

contains data in different forms (e.g. integer, float, char), we used compound datasets for our

framework.  A  data  group  is  a  structure  containing  zero  or  more  objects  hierarchically

organized by means of a tree-like structure, where an arbitrary number of objects are derived

from the  main "root" data group. Data groups and datasets  have  a logical  counterpart  in

directories and files in a hierarchical file system and, similarly to a file system, one can refer

to an object in the simulation archive by its full path name.

Figure 5: CoreGlue: the core of the CostGlue framework.

The data stored in the database, which is represented as a P+2 dimensional matrix, can be

queried by using selectors written in index notation. In this notation, each of the P+2 indices

can  be  "1",  indicating  the  smallest  index;  "end",  indicating  the  highest  index;  "n:m",

indicating all the indices between n and m included; ":", indicating the whole range from the

smallest to the highest index, "n:s:m", indicating the range from n to m in steps of s; or an

array like "[1 5 6 8]", indicating the selected indices.

When using the framework for simulation data exchange, the first step is to call the core,

together with a plugin name and its optional arguments. A given plugin can work either alone,

e.g. by performing a batch job, or it can depend on other plugins, e.g. when a command line

interface calls a specialized plugin to perform a task. Plugins also differ in the way they are

built. The simple ones wait for the results after sending the command to the core, and are

therefore unable to perform any additional  tasks.  On the other hand, complex plugins run

asynchronously in relation with the core, so they can periodically check the result queue for

results  and, in  the meantime,  inform the user  about the current work progress by reading

report messages from the report queue. Plugins are run as separate threads inside the core.

Examples of tasks a plugin can perform are:

• data import/export to/from the database, 



• statistical computations over data stored in the database,

• data extraction from the database with complex filters,

• transformations of the data contained in the database,

• graphical output created from the data in the database,

• a generic Graphical User Interface (GUI) for exploring the data in the database,

doing simple import/export or computations and running other available plugins,

• a plugin-specific GUI, etc.

6.1. Overview of the API for plugins

The core of CostGlue framework can look for available plugins and query them one by one

to get to know their capabilities. This can be used, for instance, to build a menu for a GUI.

Plugins are able to describe the parameters they need and the type of output they produce. The

core provides the required parameters to a plugin with or without input from the user. In the

case where user input is required, the core checks the provided parameters for consistency. A

GUI  can  also  use  this  information  and  present  the  choices  to  the  user.  The  plugins

communicate with the core  through a  well-defined API  which contains  all  the necessary

classes  and  methods  for  interacting  with  the  database.  The  methods  allow  a  plugin  to

manipulate the data group index in order to add or remove data groups, and to manipulate the

data groups in order to add or remove data, metadata and post-processed data. Below are a

few examples of commands provided by the API: 

• Archive open (filename, flags) - opens an archive on disk: arguments are the same

as in the C stdio library, returns an archive object.

• Group open (paramvals, exists) - paramvals is a list of parameter values; if exists is

true, returns the existing data group with the given parameters, else return a newly

created group with the given parameters.

• FieldList add (fieldlist) - adds fields (that is, columns) to a table by taking a list of

field names, types (e.g. Int8, Float32) and sizes of the fields.

6.2. Implementation of the CoreGlue framework

As we  are  interested  in  storing  simulation  data  into  a  common  database,  we  made  a

thorough analysis of the different possibilities of  data storage. We focused mainly on the

scientific data formats, as they are most commonly used in the scientific community. After the



analysis we narrowed our research down to a specific set of scientific data formats.  These

were: HDF4, HDF5, netCDF,  ODB, FITS and OpenDX. In addition to the scientific data

formats, we also considered using plain text formats, relational and object oriented databases.

In the end we decided to use the HDF5 [17] data format. The reason for such a decision was

that HDF5 meets all the requirements of data organization, (i.e. separation of raw data and

metadata) and different requirements of contemporary computer system architectures. These

are: managing huge quantities of data, offering a general data model, supporting complex data

structures,  portability  among  different  computer  platforms,  parallel  data  access  and

processing,  diversity  of  physical  file  storage  media,  and  sustained  development  and

maintenance. As a confirmation that we have made a good decision, the netCDF format itself

has recently decided to evolve towards using HDF5 as its underlying storage format.

Another important  issue was the representation of  the data.  The HDF5 is a binary file

format, which means that we need a compatible application capable of reading the file format

to view the data. This is a disadvantage, since plain text file formats are much easier to be

read. However, this problem is easily solved by using a specialized HDF5 tool [16] provided

by the HDF5 development group, which converts binary files into XML text files. 

Converting large binary files into XML text  file  format has some disadvantages.  Data

stored in XML format requires much more space than the same data stored in HDF5 binary

format. Thus, the conversion results in a high data overhead. Data lookup also slows down,

since XML parsers are not very efficient when dealing with large amounts of data, compared

with the data read performance of the HDF5 library. Nevertheless, this option is available and

the choice is left to the users.

For easy and efficient data manipulation we chose PyTables, a Python library built on top

of the HDF5 library uses NumPy as a support package, allowing for sophisticated scientific

computations.

The  extraction  of  raw  simulation  data  for  post-processing  is  supported  by  using  the

Matlab-like index notation. By this it  is  possible to take complex orthogonal slices of the

multidimensional matrix composed of all the data in the database.

The core of the software framework is written in Python. This means that the plugins for

specialized tasks also have to be written in Python. To enable plugins to be written in other

scripting or programming languages, a wrapper should be built around the core. In addition,

we use Psyco, a Python extension module, which speeds up the execution of Python code

significantly.



In order to give a flavor of the performance of the prototype application we imported and

exported an ns-2 trace, which is a mixture of numbers and strings in ASCII tabular form. In

this test both the read and write speeds were around 1 MB/s. For a reference, Matlab on the

same machine reads and writes a big matrix of numbers (no strings) with a speed of around

3 MB/s. Matlab has similar speeds both when reading from ASCII and writing to binary or

the other way around. 

6.3. Examples of plugins

Plugins are meant to be used for specialized tasks such as the import, export, computation,

and visualization of simulation data.  We have developed a number of  plugins,  which are

briefly described below.

A plugin for ns-2 and tcpdump � this plugin is used for importing ns-2 simulation data and

tcpdump measurements into a  common table format in order to enable the comparison of

these two types of data.  This proved to be a valuable feature,  especially in the process of

modeling and simulation [6]. Two data formats are available: a full one, that preserves all the

input data, and a minimum one, that stores only those data that can be safely converted from

ns-2 to tcpdump and vice versa. Both formats can be converted into an input file for NAM,

the ns-2 network animator, for a movie-like view of the network behavior at the packet level.

The command line and the HTML GUI plugins � the interactive command line plugin is

used for debugging the core and other plugins.  Additionally, it  can be used to import and

export  tabular  data,  whereby  the  user  is  required  to  specify  options  and  arguments.  A

specialized plugin can automatically recognize the type of trace and automatically provide

suitable naming, and possibly, filtering. The basic feature of the HTTP GUI is that when the

core can act as an HTTP server, providing a graphical user interface accessible with any web

browser. Through this interface, the user can look at the list of available plugins together with

their description, the input they require and the output they provide.

The plugins for antenna measurements and simulations � two different import plugins

were designed with the help of the researchers from SSR (Signals, Systems and Radio) group

at the University  of Madrid.  The first  plugin deals with antenna measurements made in a

special antenna chamber. The measurements need to be converted in order to be stored into

HDF5 database in the form of tables. A proprietary visualization plugin from SSR is used for

visualizing the antenna�s directivity diagrams. The second specialized plugin was developed

in order  to  import data from the GRASP8 antenna simulator.  The whole process (import,

export and visualization) is quite similar to the one described above.



A very useful and practical feature is the ability to compare the measurement results with

the  simulated  ones.  The  visualization  plugin supports  this  activity  as  it  allows  plotting

diagrams from both types of data.

6.4. Examples of a real-world simulation

Let us now describe how the data of a real-world simulation can be stored in the described

structure. In the first example, taken from [18], we simulate the behavior of packet switches

using the ns-2 simulator. Each simulation run is characterized by several parameters. We are

interested  in  the following simulation parameters:  architecture type (one of  OQ � Output

Queuing,  VOQ � Virtual  Output  Queuing,  and FPCF -  Forward Planning Conflict-Free),

buffer size, number of I/O ports,  traffic load, transport protocol (TCP and UDP), and flow

size  distribution  (one  of  heavy-tailed  Pareto  or  constant  flow size).  Each  simulation  run

differs in at least one of these parameters. 

Referring to data exchange model when storing the results of one simulation run in the

archive, we populate a new row in the parameter table: values in each row uniquely identify a

simulation run. Each row includes the full path to a data group, containing the table with the

results of the simulation run, metadata and post-processing data, as shown in Fig. 2. Metadata

stores information about the type of scripts used to generate that simulation run, the type of

network topology, traffic patterns, etc.

Figure 6: Parameter table with few sets of different parameters.

By using the CostGlue multidimensional data access via framework�s API, it is possible to

obtain the raw data for computational tasks by just specifying the parameter values of interest.

Using the simulation parameters as a primary interface to raw data comes in handy especially

when  we  are  dealing  with  more  than  one  observation.  In  Fig.  6  we  can  see  that  204



simulations are driven with different  values of parameters.  The obtained slices are further

processed and the results are fed to the visualization plugin for plotting graphs, which are

depicted in Fig. 7.

Post-processing data in this particular case includes packet loss probability (PLP) for three

different observations (see Fig. 7). In the first observation we analyze the PLP versus the type

of the transport protocols for different packet  switch architectures.  The load of the packet

switch ranges from 30 to 100%. All other simulation parameters remain constant. The second

observation  analyzes  PLP  versus  flow  size  distribution  for  different  types  of  transport

protocols where the load varies from 10 to 100%. The third observation analyzes the influence

of buffer size (from 10 to 400 packets) on PLP for different transport protocols and packet

switch architectures.
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Figure 7: Post-processing results for packet switches.

In the second example we compare ns-2 simulation and measurements for two different

network scenarios. Both simulation results and measurement data are saved into the common

CostGlue format. Specifically, we compare the packet flow of the ns-2 sending node with the



packet  flow of  a  real  sending  host  where  we  used  a  packet  sniffer  to  intercept  and  log

originating traffic (see Fig. 8).
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Figure 8: Comparison of simulation and measurements.

The network topology is very simple: it includes two connected nodes acting as FTP server

and client respectively. In the first scenario we made a transfer of 100 Mb file from server to

client side. The link bandwidth between nodes was set to 10 Mb/s in ns-2, whereas in the case

of real data transfer we used a 100Mbit/s Ethernet link. In the second scenario we lowered the

bandwidth link in ns-2 to 1 kb/s and used a 10 KB file for transfer. In the real network, we set

a download bandwidth limit on the FTP server to 1 kb/s. The sending times for both scenarios

are depicted in Fig. 5. Due to the bandwidth restriction set on the FTP server, in the second

scenario we got a ramp curve instead of a near linear curve. This was something we did not

anticipate. Being able to make this kind of comparisons helps us in the process of verifying

models by directly validating them against experiments.

7. Conclusions



The purpose  of  the CostGlue project  is  to  facilitate  the exchange and  management  of

simulation  data  among  simulation  practitioners  and  to  ease  the  task  of  using  different

simulation,  data  processing  and visualization  tools,  all  of  which have different  input  and

output data formats. A prototype program implementing the CoreGlue framework, based on

the CoreGlue data exchange model, has already been developed. We sincerely hope that due

to its  modular  structure the prototype will be enhanced  by other  simulation practitioners,

thanks to the use of a free software license [19]. One possible extension of our work includes

the use  of web services,  where CostGlue  would act  as  a  black box capable  of receiving

commands via web service messages and generating results which would then be forwarded

back to the user. This could result in an even more flexible exchange of simulation data.
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