
CostGlue: Simulation Data Exchange in Telecommunications

Dragan Savi�1, Francesco Potortì2, Francesco Furfari2,

Janez Be�ter1, Matev� Pusti�ek1, and Sa�o Toma�i�1

1University of Ljubljana, Faculty of Electrical Engineering,

1000 Ljubljana, Tr�a�ka 25, Slovenia
2ISTI-CNR, Pisa, Italy

dragan.savic@fe.uni-lj.si (Dragan Savi)�

The final, definitive version of this paper has been published in SIMULATION, Volume 84,

Issue 4 of April, 2008 by Sage Publications Ltd, All rights reserved. \copyright The Society for
Modeling and Simulation International (Simulation Councils Inc), 2002. It is available at:

http://online.sagepub.com/

Abstract

Exchanging simulation data among simulation practitioners is to a great extent hindered by

the use of different kinds of data formats in simulation software packages. The purpose of the

CostGlue project is to facilitate the exchange of simulation data in the field of

telecommunications. We propose a common data interchange format and a data exchange

model for raw simulation data, metadata and post-processing data. Based on this model, we

additionally propose a framework, CostGlue, designed for packaging simulation output data

into the common interchange format, launching post-processing plugins and exporting data

into input formats for various third party tools. As a proof of concept we have implemented

the framework as a software package and released it as free software.

1. Introduction

Due to the complexity, size and heterogeneity of telecommunication networks, simulation

represents an indispensable, universal and cost efficient approach to the development of new

networks and consequently to the development of new services and applications. A number of

simulators are currently in use for this purpose. Information about the behavior and operation

of a modeled system is gathered from the simulation data, i.e., the output of individual

simulation programs. A common simulation data exchange format is required to facilitate the

sharing of this information. At present, simulation data exchange is to a great extent hindered

by many different data formats used in simulation software packages. This topic has been

addressed within the framework of the European COST 285 Action "Modeling and

Simulation Tools for Research in Emerging Multi-service Telecommunications" [1], a forum

where European researchers periodically meet to address issues related to simulation of

communications systems. COST 285 observed that no general solution exists for exchanging

big quantities of simulation data from different sources and in different formats. The need was

expressed both for a common format for exchanging data, and for transforming this data for

use with different data analysis tools, each requiring a different input format.

Conversion between different tools for simulation data analysis generally requires a

conversion program for each pair of formats [2]. This means that a total of (1) / 2N N −

different conversion programs are needed, when N different formats are used. A common

interchange format would simplify data exchange: the number of conversions required to

share the data reduces from (1) / 2N N − to N, as only one conversion tool is needed for each

format.

The process of delivering valuable information about the simulated environment involves

several activities such as modeling and simulation, analysis and presentation of simulation

results, which are generally performed by several different independent applications. We

define a reference model of the process involving data collection, simulation and result

analysis, in order to provide a general and systematic overview of the simulation procedure.

Following the reference model, this paper describes the project CostGlue [3], which is

intended to facilitate simulation data exchange. The project includes the CostGlue data

exchange model, the metadata XML description, the CostGlue framework, and a prototype

implementation. We propose a data exchange model as an abstract model that describes how

data is represented and used. The model considers three types of data: raw simulation data,

metadata and post-processing data. Special attention is given to the latter two, whose structure

is based on the Open Archival Information System (OAIS) reference model [4], modified

with a more detailed description of simulation data collection related to telecommunications.

All three types of data are stored in an archive based on the common data interchange format.

When dealing with a large number of archives, it is possible to aggregate them in catalogues

to be published in repositories for scientific communities. For this reason, we use the

taxonomy from the Council for the Central Laboratory of the Research Councils (CCLRC)

Scientific Metadata Model (CSMD) [5]. The CostGlue prototype, which implements this

CostGlue framework, is able to package simulation output data into the common format,

launch post-processing plugins and export data into various formats. The framework consists

of a core, a database, an API (Application Programming Interface), and an arbitrary number

of specialized plugins. The core is the sole responsible for accessing the database. Specific

functions, such as import and export of data and different mathematical calculations, are

provided by self-describing plugins, which are loaded on demand. The plugins access the

database by interacting with the core through a well-defined API. The prototype CostGlue

software package should be viewed as a proof of concept of the feasibility of the proposed

data exchange model and the framework. Since measurements and simulation data have very

similar format, they can be stored into a common database, which allows easy comparison, a

valuable feature in the process of modeling and simulation [6].

The paper is organized as follows. In Section 2 we provide a brief overview of the related

work. The simulation process model is described in Section 3. It is followed by a short

discussion of the simulation tools and data formats in Section 4. The CostGlue data exchange

model and the metadata XML description are presented in Section 5 and the accompanying

CostGlue framework with available plugins is presented in Section 6. Some concluding

remarks are given in Section 7.

2. Related work

To the best of our knowledge, no general solution for simulation data exchange exists in

the field of telecommunications. However, there are some relevant examples that partially

address the idea of simulation data exchange among researchers. Starting with those most

related to the field of telecommunications, several online catalogues with measurement data

for different types of telecommunication networks are available. One of them is the

Community Resource for Archiving Wireless Data At Dartmouth (CRAWDAD) [7], a

wireless network data resource for the research community. It hosts several data sets in the

form of trace files (snmp, tcpdump, syslog, etc.) in different data formats. The data sets are

accompanied by several analysis tools. In addition, the CRAWDAD archive contains

metadata with the description of CRAWDAD data, tools, related papers and their authors.

Despite the efforts of the CRAWDAD community, the diversity of different file formats and

tools for each format still hinders data exchange among the researchers.

Multilayer Network Description (MND) [8] aims to assist multilayer modeling by

improving the data interchange between various tools. This is accomplished by defining a

generic data structure for the multilayer environment which is also present in communication

networks. It uses eXtensible Markup Language (XML) to increase flexibility and to improve

the visibility of relevant data. The drawback of the MND is that it represents only one of the

many possible descriptions of a simulated environment, therefore not enabling general

applicability in all of the simulated environments relevant to the domain of

telecommunications.

A software tool called DataSpork [9] developed at the University of Illinois comes from a

different research area. It is distributed as a part of the Material Computing Center software

archive. DataSpork was designed in order to perform statistical analyses common to most

simulation methods, as well as to allow for an extension to other data types and analysis tasks.

Although it is a standalone tool, its development is a part of an overall effort to improve

storage and exchange of simulation data in the area of Materials Computation. It enables the

creation of new data readers, which means that the data can be imported from any kind of data

source as long as the necessary extensions are developed. This tool has no capability of data

export, multidimensional data layout abstraction, flexible data viewing or support for

structured metadata.

The American Institute of Aeronautics and Astronautics (AIAA) Modeling and Simulation

Technical Committee has proposed a standard [10] for the interchange of simulation modeling

data of a vehicle or an aircraft between different simulation facilities. The purpose of the

standard is to maximize the efficiency of data models exchange by providing a well-defined

set of information, definitions, data tables and axis systems. The standard is implemented in

XML. Unfortunately, the descriptions of models within the XML files are specific to the field

of aeronautics and can not be used in the field of telecommunications.

The CCLRC e-Science Centre has developed a framework, called AgentX [11], which

allows simple and automated exchange of information between components of a scientific

workflow. The AgentX framework is being used in the eMinerals project [11], which focuses

on studying environmental processes at the molecular level by using a range of atomistic

simulation tools. From this project we borrowed CSMD, the taxonomy developed by CCLRC

for aggregating the archives into catalogues.

3. Simulation process model

In order to obtain a general and systematic overview of creation, flow and processing of

data, we define a reference simulation process model. The model provides a layered

decomposition of the main functions encountered in both the simulation and measurement

processes. This three layered model with one optional sub-layer is shown in Fig. 1.

The first layer - source layer - provides the raw simulation output, describing a simulation

run to the smallest detail. Raw data is generated by a simulator: usually, one or more records

are created for each event during the simulation run at the source layer. The structure and

format of the data at this point depends entirely on the simulator (e.g., ns-2, Opnet). Most

frequently data is in the form of large tabular traces, in ASCII or binary format. An optional

source recoding sub-layer handles the raw source data. Its main purpose is to convert between

different formats (e.g. from ASCII to binary or vice versa), to compress data (e.g., Gzip,

Bzip2) and to remove private information (e.g. header lines) from simulation traces. The

source layer supports both raw simulation data and real measurements data. In fact, during our

research, we found that nearly the same model can be applied to the analysis of real network

traffic traces. In this case the raw data is not a result of simulation, but rather, for example, the

data traces captured in a network link. Apart from the different tool that generates the raw

data (traffic capture tools like Tcpdump or Ethereal instead of a simulator) all the functions of

the upper layers remain the same.

Figure 1: a reference model of a simulation process.

The processing layer is responsible for the analysis of simulation data. At this level,

cumulative results can be derived from the raw data (e.g. the mean packet delay can be

calculated). It is possible to determine the statistical confidence of the results and to conduct

additional simulation runs if necessary. An important characteristic of the data processing

layer is that the amount of data received from the source layer is usually much larger than the

amount of results of post-processing.

The presentation layer is the final stage where the results are organized in a form useful for

exchanging the most important findings with other simulation practitioners. In the case of

simple tabular result printouts, this layer is empty or only slightly modifies the data (e.g.

changes in number formats, column spacing). However, data is frequently shown in the form

of 2- or 3-dimensional graphs (e.g. as a part of scientific reports or research papers, web

pages, etc.) or even presented in animated form (e.g. ns-2 NAM - Network AniMator). At this

layer the predominant requirement is the flexibility of presentation and a possibility to create

new or modified presentation objects from new or changed simulation results without

reformatting.

We can map the functionality of particular tools used in simulation to the layers of our

model. Usually, a single tool provides more than one functional layer or even all of them. In

the most favorable situation it would encompass all the functions needed and implement them

adequately to meet all the researcher�s needs. In practice this occurs very rarely and there is

usually a set of complementary tools that covers the required scope of functions within the

model. The selection of tools is based on arbitrary conditions, such as the capabilities and

performance of the individual tools, the researcher�s past experience with a particular tool, or

the availability of tools. In the case of simulated results, raw data can be generated by discrete

event simulators (e.g., ns-2, Opnet). Raw data can be captured in real networks, with sniffers,

such as Tcpdump or Ethereal. Source recoding can be done with small dedicated tools (e.g.,

Gzip, Tcpdpriv) or different proprietary shell scripts. Data analysis can be performed with

generic tools for mathematical computation (e.g., Octave, Matlab, Mathematica, Excel),

special statistical tools (SPSS, R), or proprietary and dedicated programs or scripts. Often the

simulation package provides the functionality for data processing and analysis and it is up to

the researcher to decide whether this is adequate or an additional more powerful and flexible

tool should be used. Besides dedicated graphing or animation tools, presentation ability can be

provided in generic mathematical tools and sometimes even in the simulators themselves.

4. Simulation tools and data formats

In order to provide an overview of tools and formats generally used by telecommunications

systems practitioners, we addressed a specific questionnaire to the participants of the COST

285 project, representatives of more than ten European nations. The information we gathered

can be summarized in the following observations:

• No single simulation tool has a dominant position. On the contrary, there is a great

variety of simulation tools in use.

• Apart from tabular data, other types of elaborate structural formats are seldom used .

• Most of the time the data is used for statistics or graphing. Other uses such as data

mining are rare.

• The most common method for evaluating the statistical accuracy of the simulation

data is to use independent replications: runs with different simulation times are

combined in order to assure stationary intervals of appropriate length. An alternative

method using the equivalent correlation length obtained by a single simulation run is

seldom used.

• A single simulation run produces anywhere from 1 MB to 2 GB of data and a

simulation campaign requires from 1 to 100 runs. A measurement campaign requires

from 1 to 5 runs, each generating from 100 MB to 50 GB of data.

• The required storage varies from up to 1 GB for short-term storage, to anywhere from

10 MB to 10 GB and more for long-term storage.

• The employed metadata include type, date, parameter values and their description,

version tracking, configurations, simulation scripts, and location.

• The metadata is stored in different locations: coded into directory and file names, in

separate files, in different storage location inside files (e.g., under the root directory, in

shared directories), and in databases.

• Among the simulation tools which use a predefined output format, the most common

appears to be the network simulator ns-2.

• Among the generic tools for mathematical computation and running simulations,

Matlab appears to be used by most practitioners.

• A large part of the simulators is composed by standard scripting or programming

languages and, in general, by ad hoc simulators.

• A great variety of tools is used for post-processing and/or graphing.

These observations, while limited in scope, show that some sort of ASCII format with tabular

data is used relatively often.

 The variety of tools and data formats used in simulations calls for a general way of reading

from and writing to different formats. For this reason we suggested a modular architecture for

the CostGlue framework.

5. CostGlue data exchange model

Most simulation data in telecommunications are basically sets of tables with numeric data.

Each simulation run generates a table with a few columns and a large number of rows. Each

table is associated with certain parameters specific for the simulation, and is uniquely

identified by the values of these parameters. We are interested in defining a database structure

that is able to efficiently accommodate this type of data.

In the next subsection a structural description of the data exchange model is presented

together with the accompanying detailed description of the structure of metadata and post-

processing data. This is followed by an overview of data manipulation.

5.1. Structural description of the data exchange model

The questionnaire presented in the previous section revealed that, most commonly,

simulation data is organized into a hierarchical structure accessed via a set of parameters. This

is usually done by hierarchically organizing the directories of a file system, with raw data

usually located in the leaf directories. Each directory is named after the value of the parameter

corresponding to its depth. Generally, this means that the number of tree levels depends on the

number of different simulation parameters, and the number of directories at each tree level

depends on the number of values of the parameters.

A more user-friendly method is to organize the simulation data in the form of a

multidimensional array, where parameter values are used as indices into the array. By

appropriately indexing the multidimensional array, it is possible to easily extract slices of the

whole set of data. Hence the simulation parameters act as the primary interface to raw data,

which simplifies raw data querying for users. This is especially useful when the simulation

data is collected from multiple simulation runs, which is the common case.

Fig. 2 presents the multidimensional structure of the simulation data. The rows of the

parameter table point to data groups and datasets, where the raw simulation data, metadata

and post-processing data are stored.

Figure 2: CostGlue multidimensional structure of the data organization.

Each table, together with metadata and post-processing data, is attached to a data group

which usually holds the data produced during a single simulation run. Data groups are

indexed with vectors of parameters representing an individual simulation run. The index into

the data groups is a 2-dimensional array, also referred to as the parameter table, where the

parameters relative to each data group are stored. Each column in the parameter table

corresponds to a different parameter, and each row contains the values of the parameter

relative to a data group. Therefore a parameter table is used as the data structure for accessing

a data group, while an array of parameter values relative to that data group is used as the key.

A table with raw simulation data is attached to each data group.

The overall structure is a collection of 2-dimensional tables indexed by arrays of P

parameters, as shown in Fig. 2. This can be logically seen as a matrix with P+2 dimensions,

where the first P dimensions are sparse and the last 2 dimensions (P+1 and P+2) are dense.

The first P indices are defined as parameters identifying a data group. As for the last two

indices, the first one represents the record (row) number in the data group table, and the

second one is the field (column) number of the data group table.

5.2. Metadata and post-processing data

In recent years increasing attention has been devoted to metadata in all application

domains. The XML Schema [12] provides a means for defining the structure, contents and

semantics of an XML document and is therefore widely used to collect metadata, that is, data

about data. In order to insert metadata we have defined a metadata XML Schema whose

document instances can be saved together with the simulation data, as shown in Fig. 2.

Metadata can be associated to every data group; metadata referring to the archive as a whole

is saved together with the parameter table, while metadata for a single simulation run is saved

in the related data group. Metadata can also refer to any kind of additional data, labeled as

post-processing objects in Fig.2. Such cases are, for example, the statistics on the raw

simulation data, charts, images, and any other type of data produced from or relevant to the

raw simulation data.

The metadata XML Schema is derived from the Information Model defined in the OAIS

(Open Archival Information System) reference model [4] and uses parts of the Scientific Data

Model (CSMD) [5]. The OAIS reference model is a technical recommendation enabling

permanent or indefinite long-term preservation of digital information. The objective of the

CSMD model is to enhance interoperability of scientific information systems among research

organizations. The adoption of a common XML schema from the CSMD model could

facilitate further aggregation of telecommunication archives in catalogues to be published in

repositories for the scientific communities [7, 13].

Three main elements are present in the metadata XML Schema: one for the metadata

relative to the root (Study), one for the metadata relative to a data group (DataGroup), and

one that combines them together (Archive), as shown in Fig. 3.

Figure 3: Main element of the CostGlue metadata XML Schema.

 The metadata relative to the root is stored in the root of the archive together with the

parameter table while the metadata relative to each data group is stored in the data group

together with the data table.

More details on the CostGlue XML Schema with additional pictures are available at [14].

Most of the elements in the schema are optional. The choice is motivated by the need not to

impose an excessive burden on the experimenter. However, the drawback of this choice is the

possibility to have vastly incomplete metadata. On the other hand, it is possible to envision

that a certain plugin can certify variable degrees of completeness of the metadata. This way

the repositories can accept only the archives that comply with a certain degree of metadata

completeness.

The metadata is separated from the rest of the data allowing for easily describing the

complete archive. Metadata requires little data storage and can also be made part of the

repositories, because metadata includes pointers to the archive location. Data group elements

can be extracted separately for efficiency and flexibility.

The metadata Schema does not include a way to serialize the archive data. This choice was

made because we see the possibility of exporting the whole archive (simulation data together

with metadata) in the XML format as a feature at a different level. Specifically, the HDF5 file

format used in the implementation of the software prototype includes the XML schema [15]

and the tool [16] to convert a whole HDF5 binary file into the XML file.

5.3. Data manipulation

The manipulation part of the data exchange model includes updating and querying the data

contained in the database. Updating the data involves importing different simulation outputs

which often have different file formats. After conversion, the raw simulation data is stored

into tables, with the user having to specify data types of the table fields.

When working with raw data in post-processing stage the idea is to take advantage of the

logical multidimensional data layout abstraction, where the query output is a slice of data

spanning one or more simulation runs. Since the whole database can be seen as a sparse

matrix with P+2 dimensions the slices of data can be extracted either using selectors written

in index notation or assigning different conditions to arbitrary fields of the table. Both types

of queries produce two-dimensional arrays, which can be used for further computations or

plotting.

6. CostGlue framework

 Besides the data exchange model, we have also designed a corresponding CostGlue

framework for simulation data exchange. The architecture of the framework, shown in Fig. 4,

consists of a core, database, API and several specialized plugins.

Figure 4:The CostGlue framework.

The core (see Fig. 5) is responsible for reading from and writing to the database, as well as

for the dynamic loading of the plugins devoted to different specialized tasks. The core

contains three different queues: command, result and report queue. They are used for

exchanging different types of messages with the plugins.

For the database we have chosen the HDF5 (Hierarchical Data Format) [17] as the format

to store the described data structure in Chapter 5. HDF5 consists of two primary objects -

dataset and data group. A dataset represents a multidimensional array of data elements, which

can hold different types of data. The data stored in datasets can be either homogeneous (only

one data type used within a single dataset - simple datasets) or compound (different data types

within one dataset - compound datasets). Since tabular data collected from simulators often

contains data in different forms (e.g. integer, float, char), we used compound datasets for our

framework. A data group is a structure containing zero or more objects hierarchically

organized by means of a tree-like structure, where an arbitrary number of objects are derived

from the main "root" data group. Data groups and datasets have a logical counterpart in

directories and files in a hierarchical file system and, similarly to a file system, one can refer

to an object in the simulation archive by its full path name.

Figure 5: CoreGlue: the core of the CostGlue framework.

The data stored in the database, which is represented as a P+2 dimensional matrix, can be

queried by using selectors written in index notation. In this notation, each of the P+2 indices

can be "1", indicating the smallest index; "end", indicating the highest index; "n:m",

indicating all the indices between n and m included; ":", indicating the whole range from the

smallest to the highest index, "n:s:m", indicating the range from n to m in steps of s; or an

array like "[1 5 6 8]", indicating the selected indices.

When using the framework for simulation data exchange, the first step is to call the core,

together with a plugin name and its optional arguments. A given plugin can work either alone,

e.g. by performing a batch job, or it can depend on other plugins, e.g. when a command line

interface calls a specialized plugin to perform a task. Plugins also differ in the way they are

built. The simple ones wait for the results after sending the command to the core, and are

therefore unable to perform any additional tasks. On the other hand, complex plugins run

asynchronously in relation with the core, so they can periodically check the result queue for

results and, in the meantime, inform the user about the current work progress by reading

report messages from the report queue. Plugins are run as separate threads inside the core.

Examples of tasks a plugin can perform are:

• data import/export to/from the database,

• statistical computations over data stored in the database,

• data extraction from the database with complex filters,

• transformations of the data contained in the database,

• graphical output created from the data in the database,

• a generic Graphical User Interface (GUI) for exploring the data in the database,

doing simple import/export or computations and running other available plugins,

• a plugin-specific GUI, etc.

6.1. Overview of the API for plugins

The core of CostGlue framework can look for available plugins and query them one by one

to get to know their capabilities. This can be used, for instance, to build a menu for a GUI.

Plugins are able to describe the parameters they need and the type of output they produce. The

core provides the required parameters to a plugin with or without input from the user. In the

case where user input is required, the core checks the provided parameters for consistency. A

GUI can also use this information and present the choices to the user. The plugins

communicate with the core through a well-defined API which contains all the necessary

classes and methods for interacting with the database. The methods allow a plugin to

manipulate the data group index in order to add or remove data groups, and to manipulate the

data groups in order to add or remove data, metadata and post-processed data. Below are a

few examples of commands provided by the API:

• Archive open (filename, flags) - opens an archive on disk: arguments are the same

as in the C stdio library, returns an archive object.

• Group open (paramvals, exists) - paramvals is a list of parameter values; if exists is

true, returns the existing data group with the given parameters, else return a newly

created group with the given parameters.

• FieldList add (fieldlist) - adds fields (that is, columns) to a table by taking a list of

field names, types (e.g. Int8, Float32) and sizes of the fields.

6.2. Implementation of the CoreGlue framework

As we are interested in storing simulation data into a common database, we made a

thorough analysis of the different possibilities of data storage. We focused mainly on the

scientific data formats, as they are most commonly used in the scientific community. After the

analysis we narrowed our research down to a specific set of scientific data formats. These

were: HDF4, HDF5, netCDF, ODB, FITS and OpenDX. In addition to the scientific data

formats, we also considered using plain text formats, relational and object oriented databases.

In the end we decided to use the HDF5 [17] data format. The reason for such a decision was

that HDF5 meets all the requirements of data organization, (i.e. separation of raw data and

metadata) and different requirements of contemporary computer system architectures. These

are: managing huge quantities of data, offering a general data model, supporting complex data

structures, portability among different computer platforms, parallel data access and

processing, diversity of physical file storage media, and sustained development and

maintenance. As a confirmation that we have made a good decision, the netCDF format itself

has recently decided to evolve towards using HDF5 as its underlying storage format.

Another important issue was the representation of the data. The HDF5 is a binary file

format, which means that we need a compatible application capable of reading the file format

to view the data. This is a disadvantage, since plain text file formats are much easier to be

read. However, this problem is easily solved by using a specialized HDF5 tool [16] provided

by the HDF5 development group, which converts binary files into XML text files.

Converting large binary files into XML text file format has some disadvantages. Data

stored in XML format requires much more space than the same data stored in HDF5 binary

format. Thus, the conversion results in a high data overhead. Data lookup also slows down,

since XML parsers are not very efficient when dealing with large amounts of data, compared

with the data read performance of the HDF5 library. Nevertheless, this option is available and

the choice is left to the users.

For easy and efficient data manipulation we chose PyTables, a Python library built on top

of the HDF5 library uses NumPy as a support package, allowing for sophisticated scientific

computations.

The extraction of raw simulation data for post-processing is supported by using the

Matlab-like index notation. By this it is possible to take complex orthogonal slices of the

multidimensional matrix composed of all the data in the database.

The core of the software framework is written in Python. This means that the plugins for

specialized tasks also have to be written in Python. To enable plugins to be written in other

scripting or programming languages, a wrapper should be built around the core. In addition,

we use Psyco, a Python extension module, which speeds up the execution of Python code

significantly.

In order to give a flavor of the performance of the prototype application we imported and

exported an ns-2 trace, which is a mixture of numbers and strings in ASCII tabular form. In

this test both the read and write speeds were around 1 MB/s. For a reference, Matlab on the

same machine reads and writes a big matrix of numbers (no strings) with a speed of around

3 MB/s. Matlab has similar speeds both when reading from ASCII and writing to binary or

the other way around.

6.3. Examples of plugins

Plugins are meant to be used for specialized tasks such as the import, export, computation,

and visualization of simulation data. We have developed a number of plugins, which are

briefly described below.

A plugin for ns-2 and tcpdump � this plugin is used for importing ns-2 simulation data and

tcpdump measurements into a common table format in order to enable the comparison of

these two types of data. This proved to be a valuable feature, especially in the process of

modeling and simulation [6]. Two data formats are available: a full one, that preserves all the

input data, and a minimum one, that stores only those data that can be safely converted from

ns-2 to tcpdump and vice versa. Both formats can be converted into an input file for NAM,

the ns-2 network animator, for a movie-like view of the network behavior at the packet level.

The command line and the HTML GUI plugins � the interactive command line plugin is

used for debugging the core and other plugins. Additionally, it can be used to import and

export tabular data, whereby the user is required to specify options and arguments. A

specialized plugin can automatically recognize the type of trace and automatically provide

suitable naming, and possibly, filtering. The basic feature of the HTTP GUI is that when the

core can act as an HTTP server, providing a graphical user interface accessible with any web

browser. Through this interface, the user can look at the list of available plugins together with

their description, the input they require and the output they provide.

The plugins for antenna measurements and simulations � two different import plugins

were designed with the help of the researchers from SSR (Signals, Systems and Radio) group

at the University of Madrid. The first plugin deals with antenna measurements made in a

special antenna chamber. The measurements need to be converted in order to be stored into

HDF5 database in the form of tables. A proprietary visualization plugin from SSR is used for

visualizing the antenna�s directivity diagrams. The second specialized plugin was developed

in order to import data from the GRASP8 antenna simulator. The whole process (import,

export and visualization) is quite similar to the one described above.

A very useful and practical feature is the ability to compare the measurement results with

the simulated ones. The visualization plugin supports this activity as it allows plotting

diagrams from both types of data.

6.4. Examples of a real-world simulation

Let us now describe how the data of a real-world simulation can be stored in the described

structure. In the first example, taken from [18], we simulate the behavior of packet switches

using the ns-2 simulator. Each simulation run is characterized by several parameters. We are

interested in the following simulation parameters: architecture type (one of OQ � Output

Queuing, VOQ � Virtual Output Queuing, and FPCF - Forward Planning Conflict-Free),

buffer size, number of I/O ports, traffic load, transport protocol (TCP and UDP), and flow

size distribution (one of heavy-tailed Pareto or constant flow size). Each simulation run

differs in at least one of these parameters.

Referring to data exchange model when storing the results of one simulation run in the

archive, we populate a new row in the parameter table: values in each row uniquely identify a

simulation run. Each row includes the full path to a data group, containing the table with the

results of the simulation run, metadata and post-processing data, as shown in Fig. 2. Metadata

stores information about the type of scripts used to generate that simulation run, the type of

network topology, traffic patterns, etc.

Figure 6: Parameter table with few sets of different parameters.

By using the CostGlue multidimensional data access via framework�s API, it is possible to

obtain the raw data for computational tasks by just specifying the parameter values of interest.

Using the simulation parameters as a primary interface to raw data comes in handy especially

when we are dealing with more than one observation. In Fig. 6 we can see that 204

simulations are driven with different values of parameters. The obtained slices are further

processed and the results are fed to the visualization plugin for plotting graphs, which are

depicted in Fig. 7.

Post-processing data in this particular case includes packet loss probability (PLP) for three

different observations (see Fig. 7). In the first observation we analyze the PLP versus the type

of the transport protocols for different packet switch architectures. The load of the packet

switch ranges from 30 to 100%. All other simulation parameters remain constant. The second

observation analyzes PLP versus flow size distribution for different types of transport

protocols where the load varies from 10 to 100%. The third observation analyzes the influence

of buffer size (from 10 to 400 packets) on PLP for different transport protocols and packet

switch architectures.

20 40 60 80 100
10

−3

10
−2

10
−1

10
0

load

P
L
P

a.)

voq;udp lines:1−13
fpcf;udp lines:14−26
oq;udp lines:27−39
voq;tcp lines:40−52
fpcf;tcp lines:53−65
oq;tcp lines:66−78

0 50 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

b.)

udp;pareto lines:79−93
udp;const lines:94−108
tcp;pareto lines:109−123
tcp;const lines:124−138

0 100 200 300 400
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

c.)

voq;udp lines:139−149
fpcf;udp lines:150−160
oq;udp lines:161−171
voq;tcp lines:172−182
fpcf;tcp lines:183−193
oq;tcp lines:194−204

P
L
P

P
L
P

load buffer size

Figure 7: Post-processing results for packet switches.

In the second example we compare ns-2 simulation and measurements for two different

network scenarios. Both simulation results and measurement data are saved into the common

CostGlue format. Specifically, we compare the packet flow of the ns-2 sending node with the

packet flow of a real sending host where we used a packet sniffer to intercept and log

originating traffic (see Fig. 8).

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8
x 10

4

sending time [sec]

p
a

c
k
e

t
n

u
m

b
e

r

a.)

tcpdump measurements
ns−2 simulation

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

sending time [sec]

p
a

c
k
e

t
n

u
m

b
e

r

b.)

tcpdump measurements
ns−2 simulation

Figure 8: Comparison of simulation and measurements.

The network topology is very simple: it includes two connected nodes acting as FTP server

and client respectively. In the first scenario we made a transfer of 100 Mb file from server to

client side. The link bandwidth between nodes was set to 10 Mb/s in ns-2, whereas in the case

of real data transfer we used a 100Mbit/s Ethernet link. In the second scenario we lowered the

bandwidth link in ns-2 to 1 kb/s and used a 10 KB file for transfer. In the real network, we set

a download bandwidth limit on the FTP server to 1 kb/s. The sending times for both scenarios

are depicted in Fig. 5. Due to the bandwidth restriction set on the FTP server, in the second

scenario we got a ramp curve instead of a near linear curve. This was something we did not

anticipate. Being able to make this kind of comparisons helps us in the process of verifying

models by directly validating them against experiments.

7. Conclusions

The purpose of the CostGlue project is to facilitate the exchange and management of

simulation data among simulation practitioners and to ease the task of using different

simulation, data processing and visualization tools, all of which have different input and

output data formats. A prototype program implementing the CoreGlue framework, based on

the CoreGlue data exchange model, has already been developed. We sincerely hope that due

to its modular structure the prototype will be enhanced by other simulation practitioners,

thanks to the use of a free software license [19]. One possible extension of our work includes

the use of web services, where CostGlue would act as a black box capable of receiving

commands via web service messages and generating results which would then be forwarded

back to the user. This could result in an even more flexible exchange of simulation data.

8. Acknowledgments

We are grateful to the participants of the COST 285 Action for their helpful cooperation.

This work was supported in part by the grant from the COST 285 action, by the CNR/MIUR

program �Legge 449/97� (project IS-Manet), and by the Ministry of Higher Education,

Science and Technology of the Republic of Slovenia under grant no. P2-0246.

9. References

[1] BRAGG, A.: Observations and thoughts on the possible approaches for addressing the

tasks specified in the COST 285 work-plan, COST 285 temporary document TD/285/03/15,

CNUCE-CNR (IT), 2004.

[2] Gravitz, P. D., Sheehan, J., and McLean, T.: Common Activities in Data Interchange

Format (DIF) Development, report, McLeod Institute of Simulation Sciences,

http://www.ecst.csuchico.edu/~hla/LectureNotes/99S_177SIWPaper.pdf, 1999.

[3] CostGlue project web site: http://lt.fe.uni-lj.si/costglue/

[4] CCSDC 650.0-r-2: Reference Model for an Open Archival Information System, Blue

Book, Issue 1, ISO 14721, 2003

[5] Sufi S., Mathews B., CCLRC scientific metadata model: Version 2, CCLRC technical

report DL-TR-2004-001, September 2004.

[6] Balci O.: Verification, Validation, and Certification of Modeling and Simulation

Applications, In Proceedings of the 2003 Winter Simulation Conference (New Orleans, LA),

IEEE, Piscataway, NJ, pp. 150-158, 2003.

[7] Kotz D. and Henderson T.: CRAWDAD: A Community Resource for Archiving Wireless

Data at Dartmouth, IEEE Pervasive Computing, vol. 4, 4, pp. 12-14, Oct. 2005.

[8] Rumley S., Gaumier C.: Multilayer Description of Large Scale Communication Networks,

to be published in the proceedings of the COST 285 final symposium, March 2007.

[9] DataSpork analysis toolkit: http://www.mcc.uiuc.edu/dataspork/

[10] Jackson E., Hildreth B.: Flight dynamic model exchange using xml, AIAA Modeling and

Simulation Technologies Conference and Exhibit, Monterey, California, Aug. 5-8, 2002

[11] Tyer RP at al: Metadata management and grid computing within the eMinerals project,

Proc. UK All Hands Meeting 2007 (AHM2007), Nottingham, UK, Sept. 10-13, 2007

[12] XML schema: http://www.w3.org/XML/Schema

[13] DRIVER � Digital Repository Infrastructure Vision for European Research:

http://www.driver-repository.eu/

[14] Furfari F., Potortì F., and Savi D.: The CostGlue XML schema, Tech. Rep.�

cnr.isti/2008-TR-03, CNR-ISTI, via Moruzzi, 1, January 2008.

[15] HDF5 XML Schema: http://www.hdfgroup.org/DTDs/HDF5-File.xsd.txt

[16] H5dump, a tool for converting binary HDF5 file into a XML file:

http://www.hdfgroup.org/HDF5/doc/Tools.html

[17] Folk M., McGrath R., Yeager N.: HDF: an update and future directions, In International

Geoscience and Remote Sensing Symposium (IGARSS�99), IEEE, Ed., vol. 1, pp. 273�275,

1999

[18] Pusti�ek M., Savi D., Humar I., Be�ter J.: Transport Protocol Dependent�

Communications in Different Packet Switch Architectures, IEEE Electrotechnical Conference

MELECON 2006, pp 704- 708, May 2006

[19] Potortì, F.: Free software and research, in proceedings of the International Conference on

Open Source Systems (OSS), M. Scotto and G. Succi, Eds., ECIG Edizioni Culturali

Internazionali Genova, pp. 270�271, July 2005.

