
Practical Approaches for Software Components Integration in
Telecommunications

S. Rumley *, D. Savić **, F. Potorti †, S. Tomažic ** and C. Gaumier*
* Laboratoire de telecommunications, EPFL

TCOM / STI, Station 11, CH-1015 Lausanne, Switzerland
** Laboratorij za telekomunikacije, FER
Trzaska 25, SLO-1000 Ljubljana, Slovenia
† Istituto di Scienza e Tecnologie, CNR

Via G. Moruzzi 1, I-56124 Pisa, Italy
E-mail: sebastien.rumley@epfl.ch

Abstract - Nowadays, advances in telecommunication
network design and performance analysis often rely on
dedicated software tools. Unfortunately, developing new tools
is a very time and resources consuming activity. To
rationalise development costs, existing applications can be
extended. Alternatively, existing software components can be
combined and integrated. Integration of heterogeneous
components requires many efforts, in particular when the
specific input/output data formats have to be adapted.
Furthermore, the amount of data exchanged between the
components can be huge and needs intermediate processing.
To facilitate data exchange between tools, two concepts are
presented in this paper: CostGlue and the Multilayer
Network Description (MND). Their utilisation modes and the
advantages they provide are illustrated through a practical
example.

I. INTRODUCTION

Present communication networks are complex entities,
implying equally complex analysis and/or planning
techniques. Software tools are often used to mitigate the
complexity of theses techniques. As there is a wide set of
communication devices, protocols, or systems, the set of
tools related to network modeling or design is also very
large [1].

Very often, a tool or a combination of tools developed
to address a particular problem might be employed to
address a similar but different problem. If possible (only
minor changes required), the reuse of one of the numerous
existing tools (reusability principle) should be favoured.
Alternatively, if a new development has to be undertaken,
existing modules of software parts might be recycled,
which also reduces the development costs (component
oriented design principle) [2].

These two principles are however often difficult to
implement in practice, for various reasons:
• A tool might require specific conditions, which

makes its integration with other tools difficult.
These conditions can be related to the execution
environments (e.g. operating system, database, file
system or libraries) or to the employed
programming language. Different languages indeed
reduce the ability to combine separate parts of
tools.

• The employed input/output (I/O) formats can still
be very heterogeneous.

• Certain types of tools (network simulators in
particular) produce huge amounts of data, which
are difficult to store and reuse.

• The lack of any kind of data descriptor (metadata)
may lead to confusing situations, where dozens of
intermediate datasets (set of data resulting from one
or more processing step) cannot be differentiated.

All of these issues prevent the reutilization of an output
dataset as an input to another component, and more
generally reduce the support for data exchanges between
components.

This paper presents a combination of two approaches
addressing the aforementioned points. The first one is the
CostGlue project [3]. It defines ways of storing simulation
results efficiently, and describes how raw simulation data,
metadata and post-processing data should be structured
and exchanged. The CostGlue framework has been setup
according to this description. It includes different types of
plugins, capable of performing different tasks: data import
and data export (using formats for third party tools [8]),
data post-processing and data visualization.

The second approach, the Multilayer Network
Description (MND), proposes an XML based document
format conceived for simple but efficient exchanges
between different software tools. An MND document is
organised in a variable and unlimited number of layers.
This organisation provides a good overview of the
contained data.

The rest of the paper is organized as follows. Project
CostGlue is presented in the section 2. The Multilayer
Network Description (MND) is presented in more details
in Section 3. Section 4 lists and comments several
situations where MND and CostGlue can be favourably
used. Section 5 concludes the document.

II. HANDLING SIMULATION DATA WITH
COSTGLUE

The project CostGlue [3] is intended to facilitate

simulation data exchange. It includes the CostGlue data
exchange model and its metadata XML description, the
CostGlue framework, and a prototype implementation.

A. Data Exchange Model

CostGlue proposes a data exchange model for structured

storage of three types of data: raw simulation data, post-
processing data, and the associated metadata. The structure
is based on the Open Archival Information System (OAIS)
reference model [5] with a more detailed description of
simulation data collection in the field of
telecommunications. All three types of data are stored in
one or more common archives.

When dealing with a large number of archives, it is
possible to aggregate them in catalogues. Later, these
catalogues can be published in repositories for scientific
communities. For this reason, the taxonomy from the
Council for the Central Laboratory of the Research
Councils (CCLRC) Scientific Metadata Model (CSMD) is
employed [6].

B. CostGlue Framework

A framework, which packages simulation output data

into a archives, launches post-processing plugins and
exports results in various formats, has been defined, based
on the data exchange model. It consists of a core, a
database, an API (Application Programming Interface),
and an arbitrary number of specialized plugins (Fig. 1).
The core communicates with the database, and acts as a
unified interface for writing to it and reading from it.
Several specific functions, such as import and export of
data and different mathematical calculations, are
represented as a set of self-described plugins which can be
loaded if necessary. The plugins access the database by
interacting with the core through a well-defined API.

D. Prototype Implementation

The proposed data exchange model and the framework

has been implemented as proof of concept. It constitutes
the CostGlue software package, and will be released under
GNU Lesser General Public License (LGPL).

According that results of on-the-fields measurements

(obtained for instance with a network analyser) are similar
to simulator output, both the results of simulations and the
results of measurements can be stored in the CostGlue
database. This allows an easy comparison between these
two types of data.

Fig. 1: Architecture of the CostGlue software developing
framework for simulation data exchange

III. MULTILAYER NETWORK DESCRIPTION

The Multilayer Network Description (MND) aims to
improve and organize the data exchange between various
software components and tools [4]. In addition, it offers a
human-oriented presentation of the data. An easy
consultation is very important in the context of component
integration, as it eases the verification of the data after
each component.

Tools can use MND natively, i.e. import from or export
to MND documents directly, or can use pre-processing and
post-processing modules that act as converters of MND
documents into a dedicated format and vice-versa (Fig. 2).

Native MND

tool 1

Native MND
tool n

Other tool 1

Other tool n

Export

MND
MND

Converter

MND
Converter

Native
MND
tool

Other
tool

MND
Converter

Im
po

rt

Native MND
tool 1

Native MND
tool n

Other tool 1

Other tool n

Export

MND
MND

Converter

MND
Converter

Native
MND
tool

Other
tool

MND
Converter

Im
po

rt

Fig. 2: MND acts as a link between different tools.

The structure of an MND document is organized around
three objects: nodes, links and layers. An XML element
represents each instance of these objects. Element
inheritance and attribute possession are the two main
mechanisms of XML. MND employs the inheritance to
include an element into another one: a link element is
included in a layer element where as a layer element is
included into a network element. On the other hand, the
attribute possession mechanism permits to associate data to
elements. XML attributes are character strings. Outside of
this restriction, attributes can be of all types, including
references to other objects. For instance, each node
element owns an "id=<integer>" attribute, while each link
element owns two attributes "orig=<id>" and
"dest=<id>", referencing origin and destination nodes by
using their ID numbers. This principle permits the
inclusion of incidence matrices in MND documents, as
well as more complex data structures.

This organization, made of node and links, is well
suited for the description of physical topologies, but the
link element of the MND document can be also used to
describe a logical connection, or simply a relation between
two nodes. By grouping links and nodes in layers, many
different type of information can be included the structure.
Figure 3 shows a typical example of MND document.

Any MND document must conform to the structure
depicted in Fig. 4. To permit reconstruction of the
incidence matrix, it is required for the node element to
have the "id" attribute defined. Besides other rules listed
in [4], the MND structure is open and can be extended to

fulfil future requirements. For instance, more attributes can
be added to the elements, or sub-elements can be added to
node and link elements if the attributes are not sufficient
(Fig. 3). In special cases, information can be also stored
outside of the layer/node/link structure. This is however
not recommended, as it diminishes the generality of the
MND documents.

<?xml version="1.0" encoding="UTF-8"?>
<network>
 <main_description>
 <layer id="physical">
 <node id="0" pos_x="306" pos_y="466">
 <ports type="duplex" rate="10"/>
 </node>
 <node id="1" pos_x="413" pos_y="482"/>
 <node id="2" pos_x="307" pos_y="393"/>
 <node id="3" pos_x="376" pos_y="354"/>
 <node id="4" pos_x="440" pos_y="402"/>
 <link dest="0" orig="1" capacity="1"/>
 <link dest="0" orig="2" capacity="1"/>
 <link dest="2" orig="3" capacity="2"/>
 <link dest="3" orig="4" capacity="2"/>
 </layer>
 <layer id="connections">
 <link dest="3" orig="0" rate="3"/>
 <link dest="4" orig="1" rate="1"/>
 </layer>
 </main_description>
</network>

Fig. 3: A basic example of an MND structure

element

attribute
<network>

<main_description>

<node>

<link>

<...>

<auxiliary_data>

<...>

<layer>

<layer>

id

id

label

…

orig

dest

id

…

directed

element

attribute
<network>

<main_description>

<node>

<link>

<...>

<auxiliary_data>

<...>

<layer>

<layer>

id

id

label

…

orig

dest

id

…

directed

Fig. 4: Generic structure of a MND document.

MND acts as a bridge between components. It tries to

balance three issues:
• keep enough flexibility to accept a large variety of

input or output data and to guarantee compatibility
among large number of applications,

• reach a high level of generality, in order to directly
connect components without having to adjust the pre-
processing and post-processing operations and,

• propose an acceptable level of complexity, permitting
some database-inspired operations over the data (e.g.,
selection, extraction).

In Fig. 5, MND is compared with tab-separated text
documents, proprietary documents, and hypothetical
universal format. Each of these three presents two qualities
and one drawback. MND has been conceived as an
intermediate solution.

Generality

Flexibility

Complexity

MND

Proprietary format

Text files

Universal
format

Generality

Flexibility

Complexity

MND

Proprietary format

Text files

Universal
format

Fig 5: Comparison with other alternatives. Tab-separated files are
two-dimensional and may lack of complexity. Proprietary format
can have the desired flexibility and complexity, but is not general
at all. A hypothetical universal format for networks would lack of
flexibility.

IV. TOOL INTEGRATION EXAMPLES

To illustrate the utility of the presented approaches,

several scenarios are depicted in Fig. 6 and 7. Fig. 6 shows
typical cases of “what-if” analysis: starting from an initial
scenario, different simulations are driven, in order to
measure the consequences of precise changes. For
instance, in fig. 6(a), variant 1 can be the reference
situation, while in variant 2, one link has been removed to
the reference topology, in variant 3, one link has been
added, and in variant 4, no link is removed nor added, but
capacities are adapted.

Initial
scenario

sim...
results

1

sim...
results

n

Routing
function
variant 1

Routing
function
variant n

N
et

w
or

k
si

m
ul

at
or

Initial
scenario
Initial

scenario

sim...
results

1

sim...
results

1

sim...
results

n

sim...
results

n

Routing
function
variant 1

Routing
function
variant 1

Routing
function
variant n

Routing
function
variant n

N
et

w
or

k
si

m
ul

at
or

N
et

w
or

k
si

m
ul

at
or

Initial
scenario

sim...
results

1

sim...
results

n

Pl
an

ni
ng

/R
ou

tin
g

fu
nc

tio
n

N
et

w
or

k
si

m
ul

at
or

variant
n

variant
1

Initial
scenario
Initial

scenario

sim...
results

1

sim...
results

1

sim...
results

n

sim...
results

n

Pl
an

ni
ng

/R
ou

tin
g

fu
nc

tio
n

Pl
an

ni
ng

/R
ou

tin
g

fu
nc

tio
n

N
et

w
or

k
si

m
ul

at
or

N
et

w
or

k
si

m
ul

at
or

variant
n

variant
n

variant
1

variant
1

N
et

w
or

k
si

m
ul

at
or

variant
n

variant
1

sim...
results

1

sim...
results

n

Initial
scenario

N
et

w
or

k
si

m
ul

at
or

N
et

w
or

k
si

m
ul

at
or

variant
n

variant
n

variant
1

variant
1

sim...
results

1

sim...
results

1

sim...
results

n

sim...
results

n

Initial
scenario
Initial

scenario

(a)

(b)

(c)

Fig. 6: In many situations, multiple simulations are driven. For
each simulation, the resulting output must be archived and
processed.

In Fig. 6(b), multiple simulations are driven to test the
reaction of a network planning or routing function,
confronted to different but similar situations. Again,
starting from an initial scenario (network topology + traffic
demands), multiple variants are derived, and then passed to
the routing function. The resulting data (topology, traffic +
routing information) are in turn transmitted to the
simulator. By comparing the simulation results, the
influence of changes can be measured.

In Fig. 6(c), the routing/planning procedure itself is
submitted to a “what-if” analysis. In variant 1, for instance,
routing is made using a shortest-path method, while in
variant 2, routing can be made to balance the loads over
different links.

In all cases depicted in Fig. 6, multiple simulations are
driven, implying multiple simulation output dataset. By
introducing these results into CostGlue, a batch processing
of the n dataset corresponding to the n variants can be
achieved. Additionally, the simulator input data can be
stored along to its corresponding output, as metadata. This
permits to recover easily the result of a simulation
corresponding to a specific input. Finally, as the result of
each driven simulation is kept, the use of CostGlue
prevents the situations where long lasting simulations have
to be executed twice or more times, because results have
been overwritten, deleted, or even lost.

Fig. 7 depicts situations where simulation results are

used as input for other tools, or reversely where the output
of other tools in used as simulation input. The tool can be
simply a visualisation tool, like in Fig. 7(a), as it is very
intuitive to express graphically certain aspects of the
results (for instance, displaying overloaded link in red). It
can also be, as showed in Fig. 7(b), an iterative network
dimensioning tool, which uses the simulation results to
evaluate the intermediate solutions.

Fig. 7(c) represents a situation where a simulator is used
together with two other independent tools. The first one
generates successive samples of traffic matrices, following
given statistical properties. These sample series simulate a
traffic load varying over time. The second tool implements
a traffic engineering (TE) aware routing algorithm. Using
the results of the simulation as feedback, this algorithm
reroutes portions of traffic to unload critical links and use
network capacities better. In this case, the input of the
simulation is constituted by: a) a network topology (links
and link capacities, fixed over time), b) the traffic matrix
(variable over time), c) the routing information outputted
by the TE algorithm (variable). The routing algorithm
takes the simulation results as input, as well as the
previous routing information.

The MND format has been conceived to be used in
situations illustrated on Fig. 6 and 7. On the first side, its
human oriented presentation permits to compose rapidly
different variants, like in Fig. 7(a) and (b). On the second
side, it offers one unique structure to store various values
and parameters. In the case 7(c), the MND file will
typically include several layers containing heterogeneous
information:
• network topology layer,
• traffic demands layer,
• routing layer, and
• simulation statistics layer.

Concerning the simulation statistics layer, an
intermediate processing step should be performed to
compute statistical values from the large amounts of
simulation outputs. This intermediate tool can be
CostGlue, as depicted on Fig. 8. CostGlue will perform the
post-processing operations over simulation output, and
compute, for instance, the average utilisation of each
physical link, or the average packet loss ratio of each
traffic demand. Using a specific MND plugin, it can later
store the results inside the initial MND document. The
same MND document can also be used as a descriptor for
simulation results.

Up to now nothing has been mentioned about the
simulator, which can be a dedicated one, using natively the
MND format, or an existing one, like the NS-2 simulator
[7]. As a proof of concept, a MND NS-2 converter has
been written and NS-2 simulation scripts have been
successfully generated from MND documents. CostGlue
framework includes a plugin permitting to analyse NS-2
output traces.

sim...
results
step n

sim...
results
step n

N
et

w
or

k
si

m
ul

at
or

N
et

w
or

k
si

m
ul

at
or Network

dimensionning
function

Network
dimensionning

function

step
n+1
step
n+1

step
n

step
n

sim...
results

1

sim...
results

n

N
et

w
or

k
si

m
ul

at
or Visualiservariant

1

variant
n

sim...
results

1

sim...
results

1

sim...
results

n

sim...
results

n

N
et

w
or

k
si

m
ul

at
or

N
et

w
or

k
si

m
ul

at
or Visualiservariant

1
variant

1

variant
n

variant
n

(a)

(b)

N
et

w
or

k
si

m
ul

at
or

N
et

w
or

k
si

m
ul

at
or

sim...
results
sim...
resultsrandom

traffic matrix
generator

random
traffic matrix

generator

ne
tw

or
k

to
po

lo
gy

ne
tw

or
k

to
po

lo
gy

tra
ff

ic
m

at
rix

tra
ff

ic
m

at
rix

TE-aware
routing

algorithm

TE-aware
routing

algorithm

(c)

up
da

te
d

ro
ut

in
g

ta
bl

es

up
da

te
d

ro
ut

in
g

ta
bl

es

ro
ut

in
g

ta
bl

es
ro

ut
in

g
ta

bl
es

in
iti

al
ro

ut
in

g
ta

bl
es

in
iti

al
ro

ut
in

g
ta

bl
es

Fig. 7: Network simulators can be combined with various tools. It
is therefore very important to specify a common format which
permits to integrate tools easily.

sim...
results
sim...
results

Network
dimensionning

function

Network
dimensionning

function

MND
Sim.

M
N

D
CostGlue

MND plugin

CostGlue

MND plugin

Network topology
Initial link capacities
Traffic demands
Routing

M
N

D

Network topology
Traffic demands
Routing
Mean link utilisation
Average packet loss ration
Average packet delay

M
N

D

Network topology
Updated link capacities
Traffic demands
Routing

traffic
traces
traffic
traces

N
et

w
or

k
si

m
ul

at
or

N
et

w
or

k
si

m
ul

at
or

Metadata

Fig. 8 : In this block scheme, an iterative network dimensioning tool is used together with a network simulator. The simulator tests the
successive intermediate solutions generated by the dimensioning tool, until reaching an adequate level. CostGlue is used to store and
process simulation results, while MND documents serve as intermediate between tools. Remark that 1) MND document is used as meta-
data for simulation results, 2) traffic traces can also be processed by CostGlue, whose results can later be stored in the MND document,
3) as the results of each successive simulation is stored in the GostGlue archive, it is possible to retrace the evolution, and therefore to
assess the quality of the network dimensioning function.

V. CONCLUSION

In various situations, it is more valuable to combine
existing tools rather than write new ones. However
existing software components have been conceived in an
independent way. Therefore they often provide very
heterogeneous input and output formats. To address this
problem, features offered by CostGlue and MND have
been presented.

MND is a light-weight document format which
rationalizes the data exchanges between components. It
furthermore organizes the data in a way which eases the
consultation, and permits a graphical visualization as
depicted in Fig. 7.

CostGlue offers structured storage for raw simulation
data, metadata and the post-processing data. As certain
tools like network simulators output large amount of data,
this structured storage is of great importance to realize the
integration process. Additionally, CostGlue presents post-
processing capabilities.

Practical scenarios, where multiple simulations are
driven and/or where different components are evolved,
have been presented to illustrate the validity of the
proposed approaches.

VI. ACKNOWLEDGMENTS

The research presented here has been undertaken by

members of the European Cooperation in the field of
Scientific and Technical Research (COST) Action 285
"Modeling and Simulation Tools for Research in Emerging
Multi-service Telecommunications" and Action 291
"Toward Digital Optical Networks". It has been supported
by the Swiss Secretariat for Education and Research

REFERENCES

[1] A.W. Bragg, "Which network design tool is right for you?"

IT Professional, vol.2, no.5, pp.23-32, Sep/Oct 2000
[2] M. Lackovic, C. Bungarzeanu, “A Component Approach to

Optical Transmission Network Design”, Modeling and
Simulation Tools for Emerging Telecommunication
Networks, pp. 335-355, Springer, 2006.

[3] CostGlue project web site: http://lt.fe.uni-lj.si/costglue/
[4] S. Rumley, C. Gaumier, “Multilayer Description of Large

Scale Communication Networks”, Recent Advances in
Modeling and Simulation Tools for Communication
Networks and Services, pp. 121-135, Springer, 2008.

[5] CCSDC 650.0-r-2: Reference Model for an Open Archival
Information System, Blue Book, Issue 1, ISO 14721, 2003

[6] S. Sufi, B. Mathews, CCLRC scientific metadata model:
Version 2, CCLRC technical report DL-TR-2004-001,
September 2004

[7] Network simulator NS-2 web site:
http://www.isi.edu/nsnam/ns/

[8] D. Savić, M. Pustisek, F. Potorti. A tool for packaging and
exchanging simulation results. V: First International
Conference on Performance Evaluation Methodologies and
Tools Valuetools, Pisa, Italy, October 11-13, 2006.

