
STORING AND EXCHANGING SIMULATION
RESULTS IN TELECOMMUNICATIONS

Dragan Savić1
, Francesco Potortì

2
, Francesco Furfari

2
,

Janez Bešter
1
, Sašo Tomažič1

, Matevž Pustišek
1

1University of Ljubljana, Faculty of Electrical Engineering,
1000 Ljubljana, Tržaška 25, Slovenia

2ISTI-CNR, Pisa, Italy

dragan.savic@fe.uni-lj.si (Dragan Savić)

Abstract

Though storing and exchanging simulation data is a rather simple task done by simulation
practitioners, it is quite often a challenge as huge quantities of data are not uncommon, and
conversion between different formats can be much time consuming. After examining some of
the needs of the telecommunications simulation community, we describe the architecture of a
working prototype – CostGlue – to be used as a general-purpose archiver and converter for
large quantities of simulation data. The software architecture of the CostGlue tool is modular
therefore allowing further development and contributions from other research sphere of
activity. The core of the tool – CoreGlue – is responsible for communicating with the
database. It acts as a unified interface for writing to the database and reading from it. Specific
functions like import and export of data and different mathematical calculations are
represented as a set of self-described modules, which are loaded as necessary. The graphic
user interface is introduced as a web application for the simplicity of use and effective remote
access to the application. The software package CostGlue is going to be released as free
software with the possibility of further development.

Keywords: simulation, measurements, data, archiving, HDF

Presenting Author’s biography

Dragan Savić received his B.S. degree in electrical engineering from
Faculty of Electrical Engineering, University of Ljubljana, Slovenia in
2004. He is currently a Ph.D candidate in the Laboratory for
communication devices. His research interests include simulation of
communication networks and data mining in the field of
Telecommunications. He is a an IEEE member and a president of the
IEEE student branch of Ljubljana.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction

Simulation is quite common in the field of
telecommunications because of the difficulties of
many research challenges, which originate from the
complexity, largeness and heterogeneity of the
telecommunication networks that are being simulated.
Because of this properties simulations represent
indispensable, universal and cost efficient approach to
the development of the new networks and
consequentially also the development of new services
and applications. Therefore there is a great variety of
simulation programs in use. These programs –
simulators – serve the purpose of inspecting different
design approaches and studies of telecommunication
networks.

Information about the behavior and operation of the
modeled system is gathered from the simulation data,
which represent the output of individual simulation
programs. In order to achieve a good flow of the
gained information among the researches and research
institutions it is necessary to take care of the exchange
of the simulation data and post-processed data.
Currently, simulation data exchange is hindered by the
usage of different kinds of data formats in simulation
software packages.

This topic has been addressed [1] in the framework of
the European COST 285 Action "Modeling and
Simulation Tools for Research in Emerging Multi-
service Telecommunications"; a forum where
researchers from all around Europe have periodically
met to address issues related to the simulation of
communications systems. The point made was that
apparently no general purpose tools exist for
exchanging big quantities of simulation data coming
from different sources in different formats. Not only
was the need for a common format for exchanging
data highlighted, but also the need of feeding this data
to different tools for post-processing, each requiring a
different input format.

To better understand the scope of different
requirements we define a reference model that
encompasses the creation, flow and processing of data
in the analysis of telecommunications systems. The
main functional parts comprising such a model
(simulators, data collectors, graphing tools, statistical
tools) are covered by the many existing tools that are
used by the research community; we focus on input
data in the form of simulation results (e.g., ns-2 [5]
traces), or measurements (e.g., Tcpdump traces). Raw
data can be post-processed (e.g., packet delay) and the
results stored separately from the raw data or
complementing them, so that further analysis is
possible based on both raw and post-processed data.
Finally, the results can be exported in various
widespread output formats, like tabular ASCII data or
XML.

Data storage is based on the HDF5 [2] data format,
which was selected after the analysis of the available
options. HDF5 has been successfully applied in
several scientific projects; it enables efficient data
storage and lookup. Among the features most relevant
to our purpose, it provides support for extremely large
quantities of data, meta descriptors, and embedded
compression. A set of programming libraries is
available in C and Python as well as in numerous
others languages, which simplifies software
development.

We propose a prototype tool called CostGlue capable
of packaging simulation output data into a common
format, launching external post-processing modules
and exporting data into various output formats. The
basic mechanism provided by the HDF5 data format
to store metadata is enriched, in order to support a
more useful XML Schema language in defining the
significant information about simulation data.

The next sections describe the proposed architecture
of CostGlue into deeper detail, particularly its core -
CoreGlue.

2 Formats for exchanging data

CostGlue acts as an archive for data generated by
various different simulation programs and as a
converter from several output formats to several input
formats. Therefore, it is important to know which
programs and formats are generally used by
telecommunications systems practitioners. To this end
we used the information obtained from the COST 285
participants, representatives of more than ten
European nations, about the kind of tools they use for
their simulation work. We learned that no single
simulation tool has a dominant position, but that there
is a great variety of tools in use.

A specific questionnaire directed to the above
mentioned people yielded some interesting results:

� Apart from tabular data, other types of data
organization, such as hierarchical or other elaborate
structural formats are rarely used.

� Most of the time, data are used for statistics or
graphing, other uses such as data mining are rare.

� The most common method for evaluating the
statistical accuracy of simulation data is to use
independent replications with the combination of
different simulation times to assure long enough
stationary intervals; equivalent correlation length
(single simulation run) is rarely used; these methods
are generally applied on a case-by-case basis, with the
help of custom Bash, Perl or Python scripts.

� A single simulation run produces anywhere from 1
MB to 2 GB of data, and a simulation campaign
requires from 1 to 100 runs, in the responses we got;
measurements campaigns (as opposed to simulation)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

required from 1 to 5 runs, each generating from 100
MB to 50 GB of data.

� Storage required varies from up to 1 GB for short-
term storage to anywhere from 10 MB to 10 GB and
more for long-term storage.

� Used metadata include type, date, parameter values
and their description, version tracking, configurations,
simulation scripts, and location.

� Metadata is stored in different locations: coded into
directory and file names, in separate files, in different
storage location (e.g., under root directory, shared
directories) inside files, and in databases.

Among those who use a predefined output format, the
most common appears to be the network simulator ns-
2. Among the generic tools for mathematical
computation and running simulations, Matlab appears
to be used by many. A large part of the simulators is
composed by standard scripting or programming
languages and, in general, by ad hoc simulators.
Concerning the tools used for post-processing or
graphing, there is an even greater variety. These
observations, while limited in scope, show that some
sort of tabular ASCII format is of common use, and
thus that being able to read and write ASCII tabular
data is certainly a requisite for our proposed archiver
and converter. Nevertheless, the variety of tools used
also calls for a general way of reading and writing
many formats: that is why we consider the modular
architecture of CostGlue a necessary feature for the
tool to be useful at all.

Another interesting point is that simulation data and
measurement data have a lot in common, and a tool
useful for one can be also useful for the other.
However, measurements like simulation results are
often output in particular formats, and an input
converter is very frequently needed. An interesting
feature that can be made part of CoreGlue is the
ability to give a similar treatment to data coming
either from measurement or from simulation of the
same environment, and archive them in the same
format. This is the reason why the first prototype of
the CostGlue includes the ability to read ns-2 data and
Tcpdump data, store them into a common format and
write in Nam, ns-2 and Tcpdump formats. This
capability makes it easy to use the many tools
available that are able to analyze and graph data
obtained by both ns-2 and Tcpdump.

All the above discussion leads to a scenario where a
simulation tool is run several times, each time
producing tabular data, that is, data that can be
conveniently stored into a two-dimensional structure
having relatively few columns and a possibly large
number of rows. What about data that cannot be
naturally converted to a two-dimensional format? In
this case, the inner structure of the archived data needs
to be different. One of the challenges is to make the
tool efficient in the most common case of collections

of tabular data, but still be useful in the case of non-
tabular data.

3 The database and the database

structure

A common file format solves several problems of
simulation data exchange. Therefore we made a
thorough analysis of different data formats and their
corresponding libraries for data manipulation. Among
many, we have focused on the following set of data
formats: HDF4, HDF5, netCDF, ODB, FITS and
OpenDX. Beside these, we also considered using plain
text formats, XML and SQL databases. The results of
the analysis makes it clear that the HDF5 file format is
the most suitable for this task, since it meets all the
requirements of data organization e.g., separation of
raw data and metadata, and different requirements of
contemporary computer system architectures, such as
managing big quantities of data, offering a general
data model, supporting complex data structures,
portability among different computer platforms,
parallel data access and processing, diversity of
physical file storage media, and sustained
development and maintenance.

Summarizing the above, most simulation data in the
computer communications area are collections of
tables of numeric data: each simulation run generates
a table of data having few columns and a possible
large number of rows. Each table is associated with
certain parameters specific to a simulation run that
generated it, and is uniquely identified by the values
of those parameters. We are interested in defining a
database structure that is able to efficiently
accommodate this type of data. HDF5 meets these
requirements.

HDF5 is data format with associated software library.
The software library consists of two primary objects:
dataset and group. A dataset represents a
multidimensional array of data elements, which can
hold different types of data. The data stored in datasets
can be either homogeneous (only one data type used
within a single dataset - simple dataset) or compound
(different number of data types within one dataset -
compound dataset). Since tabular data collected from
certain simulators often contains data with different
types (e.g., integer, float, char), we use compound
datasets to accommodate the nature of simulation
outputs. An HDF5 group is a structure containing zero
or more HDF5 objects. By using two primary HDF5
objects, data can be organized hierarchically by means
of a tree structure where an arbitrary number of HDF5
objects are derived from the main "root" group.
Groups and datasets have a logical counterpart in
directories and files in a hierarchical file system and,
similarly to a file system, one can refer to an object in
an HDF5 file by its full path name.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

Fig. 1 General overview of the structure of the
database

To meet the requirements of efficient data storage,
especially those critical to management, understanding
and reuse of scientific data, each HDF5 object may
have associated metadata stored in the HDF5 file
(referred as archive) in a simple attributes form.
Attributes usually represent a small dataset connected
to a certain group or a dataset. Their purpose is to
describe the nature and/or the intended usage of the
object they are attached to.

In the design of the database structure our goal was a
flexible representation of the stored simulation data by
using one multidimensional array, where a user can
easily extract a desirable portion of the simulation
data. Even though HDF5 supports multidimensional
arrays, it is not efficient to store large amount of data
in just one array. Furthermore, due to the HDF5
primary aspect of use, which is to have data organized
hierarchically, storing everything inside a single
multidimensional array would be a loss on the side of
flexibility. We also introduced a parameter table
which acts as an index. By this we are able to map the
logical view of a multidimensional matrix into an
HDF5 hierarchical structure.

Fig. 1 presents a general overview of the proposed
database structure, where the parameter table
represents the logical part and all other groups and
datasets represent actual data, where the raw
simulation data, metadata and post-processing data is
stored. The whole database is treated as one archive
containing a "root" group from which all other groups
and datasets form a two-level tree.

An immediate extension to having tables of numeric
data is having tables of fixed-length data, which can
be flags, numbers or strings. The PyTables library
allows efficient manipulation of 2-dimensional HDF5
compound datasets from Python referred to as tables
from now on. Each table, together with metadata and
post-processing data, is attached to a data group,

which usually holds the data produced during a single
simulation run. Data groups are indexed by vectors of
parameters representing individual simulation run.
Thus the index is a 2-dimensional array, referred also
as the parameter table, where the parameters relative
to each data group are stored: each column
corresponds to a different parameter, and each row
contains the values of the parameter relative to a data
group. Therefore an index is used as the data structure
for accessing a data group, using an array of parameter
values relative to that data group as the key. A table is
attached to each data group, where each row is filled
with the values of the fields, each field corresponding
to a column of the table.

archive[P1, P2, P3, ... , PN, F, R]

sparse

dimensions

dense

dimensions

Fig. 2 Multidimensional view of the raw data

The overall structure is a collection of 2-dimensional
tables indexed by arrays of P parameters, as described
on the Fig. 2. This can be logically seen as a matrix
with N+2 dimensions, where the first N dimensions
are sparse and the last 2 dimensions (N+1 and N+2)
are dense. We define the first N indices as parameters
identifying a data group. As for the last two indices,
the first (F) of them represents the field in the data
group table, and the second index (R) the row number
of the data group table.

Let us now describe how the results of an example
real-world simulation can be stored in the described
structure. We are simulating the behavior of packet
switches in ns-2; each run is characterized by several
parameters, such as architecture type, buffer size,
number of I/O ports and traffic load. Each simulation
run differs in at least one of these parameters. When
storing the results of one simulation run in the archive,
we populate a new row in the indexing table: values in
each row uniquely identify a simulation run. Each row
includes the full path to a data group, containing the
table with the results of the simulation run, metadata
and processing data, as shown in Fig. 1. Metadata
stores information about the type of scripts used to
generate that simulation run, the type of network
topology, traffic patterns, etc. Post-processing data
include packet loss probability, maximum, minimum
and average packet delay. Metadata and processing
data are also associated with the whole archive, and
contain information relative to the whole set of
simulation runs.

3.1 Metadata and processing data

In recent years increasing attention has been devoted
to metadata for every application domain. The XML
Schema language [7] provides a means for defining
the structure, contents and semantics of an XML
document and it is widely used to collect data about
data, that is, metadata. The HDF5 data format allows

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

metadata to be associated with every object by using a
series of predefined attributes in the form of
name=value pairs. This mechanism is too simple for
our requirements, so we decided to use it just to
replicate some relevant piece of information, in order
to increase the robustness of the archiver system.
Consequently, in order to insert metadata, we defined
an XML Schema whose document instances can be
saved together with the simulation data, as reported in
Fig. 1. Metadata can be associated to every data
group; metadata referring to the archive as a whole are
saved together with the indexing table, while metadata
for a single simulation run are saved in the related data
group. Metadata can make reference to any kind of
additional data, which are labeled in Fig. 1 as post-
processing objects; examples are statistics on the raw
data, charts, images, and any type of data that are
produced from or relevant to the raw data.

The CostGlue metadata XML Schema is derived from
the Information Model defined in the OAIS reference
model [8] and from the Scientific Data Model
(CSMD) [9]. The Open Archival Information System
(OAIS) is a technical recommendation to provide
permanent or indefinite long-term, preservation of
digital information. Of particular interest is the OAIS
Information Model. The preserved information is
called content information and is accompanied by a
complete set of metadata as depicted in Fig. 3, where
the content data object is the actual preserved data (a
simulation run or measurement trace in our case) and
the representation information consists of the
information that is required to render and interpret the
object. This might include the specification of the data
format as well as the software needed to access the
data. The reference information, used to provide
assigned identifiers to the content information, allows
to univocally referring the object outside of the
system. Typical identifiers could be UUIDs or terms
of taxonomy. The context information documents the
relationships between the content information and its
environment, including why the object was created
and how it is related to other objects. The provenance
information specifies the origin of the content
information, any changes that may have taken place
and so on. Finally the fixity information provides data
integrity checks to verify that the object has not been
altered in an undocumented way.

Archive Unit

Content Information

Content Data

Object

Representation

Information

Preservation Descriptive

Information

Reference Provenance

Context Fixity

Fig. 3 Archive package as defined in the OAIS
information model

Our XML Schema is based on the OAIS information
model with a structure specialized for describing a

collection of simulation runs. Indeed, the adoption of
an XML schema could facilitate further aggregation of
telecommunication archives in catalogues to be
published in repositories for the scientific
communities [4, 10]. For this reason we have adopted
in our schema the taxonomy used in the CSMD model
depicted in Fig. 4, where the boxes labeled
experiment, simulation and measurement contain the
raw data we aim at archiving. The objective of the
CSMD model is to aid interoperability of scientific
information systems among research organizations.
The information related to the project or investigation
to which the simulation data refer are optional but, if
provided, they are used in both the reference
information and in the context information metadata.

Company/

Goverment

Policy

Research

Programme

Study/

Project

Investigation

Measurement Simulation Experiment

1..

1..

Fig. 4 Main classes of the CSMD model version 2

4 CostGlue architecture

The CoreGlue manages the index and the database
structure, including the tables. Modules are
responsible for metadata and post-process contents,
both for the single data groups and for the whole
archive. The CoreGlue and the modules together
constitute the whole application, which is named
CostGlue.

The CostGlue is written in Python. This language was
chosen because of anecdotal evidence of its efficiency
both in memory usage and processing power and for
its programmability ease, due to automatic garbage
collection and many native functions and types.
Portability among operating systems is excellent and
library availability for many tasks, especially
mathematical ones, is rich. With respect to its main
competitor, Java, Python has a generally smaller
memory footprint and since it is completely free, does
not suffer from being controlled by a single entity.

The architecture of the CostGlue application, depicted
in Fig. 5, consists of a core, called CoreGlue, and
several specialized modules. The core takes care of
reading and writing to the HDF5 archive and of the
dynamic loading of modules, while the modules are
devoted to specialized tasks. Modules interact with the
core through an API. Examples of tasks a module can
perform are:

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

� Data import/export to/from the archive.

� Statistical computations over data stored in the
archive.

� Data extraction from the archive with complex
filters.

� Transformations over the data contained in the
archive.

� Graphical output creating from the data in archive.

� Provision of a generic graphical user interface (GUI)
for exploring the data in the archive, doing simple
import/export or computations and running other
available modules.

� Provision of a module-specific GUI.

CostGlue

CoreGlue

HDF5

Import

modules

Export

modules

Processing

modules

R/W

API

Fig. 5 CostGlue architecture

5 Overview of the module API

Python, like many modern languages, supports
dynamic module loading. We exploit this possibility
by providing a module library with a limited number
of modules and leaving it open for other parties to
write new modules. Modules are Python self-
describing programs, which reside in a fixed place.
The CoreGlue can look for available modules and
query them one by one in order to get to know their
capabilities; this can be used for instance for building
a menu for a GUI (graphical user interface). Modules
are able to describe the parameters they need and the
type of output they produce. The needed parameters
can then be provided to the module by the CoreGlue
with or without input from the user; in the case where
input is required, CoreGlue checks the provided
parameters for consistency. A GUI can also use this
information and present the choices to the user.
Modules interact with the CoreGlue through a well-
defined API which contains all necessary classes and
methods for interacting with the database. The
methods allow a module to manipulate the data group
index in order to add or remove data groups, and to
manipulate the data groups, in order to add or remove
data, metadata and post-processed data.

The API also includes methods for accessing data with
selectors written in index notation, which is widely

used in matrix computations programs such as Matlab
or Octave [3]. In this notation each of the P+2 indices
can be "1", indicating the smallest index; "end",
indicating the highest one; "n:m", indicating all the
indices between n and m included; ":", indicating the
whole range from smallest to highest, "n:s:m",
indicating the range from n to m in steps of s; an array
like "[1 5 6 8]" indicating the selected indices. Using
the Matlab index notation one can take complex
orthogonal slices of the multidimensional matrix
composed of all the data in the database; in fact, the
database structure can be seen as a sparse matrix with
P+2 dimensions, and being able to take a slice of this
matrix could prove a powerful feature of CostGlue.

The CoreGlue contains three different queues:
command, result and report queue, which are used for
exchanging different types of messages with modules.
When using the CostGlue the first step is to call the
CoreGlue together with a module name and its
optional arguments. A given module can work either
alone, e.g., by performing a batch job, or it can depend
on other modules, e.g., a command line interface can
call a specialized module to do some work. Modules
can also differ in the way they are built. Simple ones,
after sending the command to the CoreGlue, wait for
the results and are therefore not able to perform any
additional tasks. Alternatively, complex modules run
asynchronously with respect to the core, so they can
check periodically the result queue for results and in
the meantime inform the user about the current work
progress by reading report messages from the report
queue. Modules working as described are run as
separate threads inside the core.

5.1 The command line and the HTML GUI

modules

When CoreGlue is invoked by a command line, its
first argument is the module name, followed by the
parameters needed by the module. When invoked with
the argument html, the CoreGlue acts as an HTTP
server, providing a graphical user interface. Through
this interface, the user can look at the list of available
modules and, for each of them, look at a description,
at the input they require and at the output they
provide. The CoreGlue provides an interface for the
input of module parameters, complete with checking,
thanks to the information that it reads from the
modules themselves. In the simplest case, this is
analogous to calling the module on the CoreGlue
command line, but more convenient for interactive
use. A module can also provide a graphical interface
or graphical output by itself.

Currently an interactive command line module is
implemented. This module is used for debugging of
the CoreGlue and modules. Additionally, it can be
used to import and export tabular data. This requires
the user to specify options and arguments; a
specialized module can automatically recognize the

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

type of a trace and automatically provide naming, and
possibly, filtering.

5.2 Modules for antenna measurements and

simulations

We have designed two different import modules
together with researchers from SSR (Signals, Systems
and Radio) group at the University of Madrid. The
first module deals with antenna measurements.
Measurements are taken in the special antenna
chamber. There are three types of different kinds of
measurements depending on the way in which the
probe or the testing antenna are shifted: spherical (roll
over azimuth – Θ and Φ), cylindrical or planar. Each
measurement is performed on a single frequency and
the results are saved in two separate files. The first file
contains the information about the organization of the
raw data, which also represents the second file. The
second file is in a binary form. To be stored into
HDF5 database (in form of tables) it needs to be
converted into ASCII format. After the import action
of all the performed measurements is finished we can
start using the SSR’s proprietary visualization module
(written in Matlab) for visualizing the antenna’s
directivity diagrams. Each measurement is selected by
a set of parameters from the visualization module. In
this case the names of parameters are: client name,
project name, antenna type and working frequency.

The second specialized module is for dealing with
antenna simulation results. The results are a direct
output of the GRASP8 antenna simulator. The whole
process (import, export and visualization) is quite
similar to the one described above. The only
difference is that here the simulation results are
already in ASCII format and there is no additional
conversion. However because of the file structure we
need to first extract the information from the header
lines before the actual results are imported in HDF5
database. A very useful and practical feature is the
ability of comparing the measurement results with
simulated ones. Therefore the visualization module
supports this activity by plotting diagrams from both
types of antenna data.

6 Conclusions

The purpose of the conversion and storage tool
described in this paper is to facilitate the exchange and
management of simulation data among researchers,
and to ease the task of using different simulation,
measurement, data processing and visualization tools,
all having different input and output data formats. A
prototype with a debugging interface is already
working. As soon as the prototype passes its testing
stage, it will hopefully be enhanced by other
simulation practitioners thanks to its modular
structure. Possible extension to the presented
architecture includes being able to accommodate non-
tabular data.

We believe that software developed as part of research
activity should be released with a free software
license, because research results should be made
available for use by anyone, for any purpose and be
freely modifiable, in order to further knowledge and
usefulness [6]. The choice of license will be among
the MIT X license, the GNU LGPL, and the GNU
GPL licenses which we think best serve the purpose of
free research software.

7 References

[1] BRAGG, A. Observations and thoughts on the
possible approaches for addressing the tasks specified
in the COST 285 work-plan. COST 285 temporary
document TD/285/03/15, CNUCE-CNR (IT), 2004.

[2] FOLK, M., MCGRATH, R., AND YEAGER, N.
HDF: an update and future directions. In International
Geoscience and Remote Sensing Symposium
(IGARSS’99) (1999), IEEE, Ed., vol. 1, pp. 273–275.

[3] GOLUB, AND LOAN, V. Matrix Computations, 3
ed. The Johns Hopkins University Press, 1996.

[4] KOTZ, D., AND HENDERSON, T. CRAWDAD:
A Community Resource for Archiving Wireless Data
at Dartmouth. IEEE Pervasive Computing 4, 4 (Oct.
2005), 12–14.

[5] MCCANNE, S., AND FLOYD, S. The network
simulator - ns-2. University of Berkley, Oct. 2005.

[6] POTORTÌ, F. Free software and research. In
proceedings of the International Conference on Open
Source Systems (OSS) (July 2005), M. Scotto and G.
Succi, Eds., ECIG Edizioni Culturali Internazionali
Genova, pp. 270–271. Short paper.

[7] http://www.w3.org/XML/Schema

[8] ISO 14721:2003, Blue Book. Issue 1. CCSDC
650.0-r-2: Reference Model for an Open Archival
Information System

[9] Shoaib Sufi, Brian Mathews, CCLRC scientific
metadata model: Version 2, CCLRC technical report
DL-TR-2004-001, September 2004.

[10] DRIVER (http://www.driver-repository.eu/)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

	1 Introduction
	2 Formats for exchanging data
	3 The database and the database structure
	3.1 Metadata and processing data
	4 CostGlue architecture
	5 Overview of the module API
	5.1 The command line and the HTML GUI modules
	5.2 Modules for antenna measurements and simulations

	6 Conclusions
	7 References

