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Abstract— Satellite systems are evolving towards higher avail-
able bandwidths and dynamic allocation based on instantaneous
traffic rates offered at the stations, so called BoD (bandwidth on
demand) channel sharing. This trend is paired with more and
more powerful error correcting schemes, like those adoptedin
the recent DVB-S2 standard, which promise to make the channel
virtually immune from packet errors. These factors, together
with the significant round-trip delay of geostationary satellites,
combine so that most TCP connections would send all of their
data during the Slow Start phase. We investigate the performance
of TCP during startup on recent BoD system by observing and
explaining the behavior of different TCP flavors on different
systems when transmitting data over the Eutelsat’s SkyplexData
satellite system. We make recommendations for choosing and
improving TCP implementations and for future BoD allocation
schemes.

I. I NTRODUCTION

Recent and future satellite systems are characterized by
quasi-ideal loss characteristics and broadband links. Conse-
quently, in the first place congestion - as opposed to packet
loss due to link errors - dominates the TCP dynamics, and
in the second place the delay-bandwidth product is very large.
As a consequence of these two effects, TCP sessions are often
concluded within the Slow Start phase, without incurring any
packet loss.

The performance of the Slow Start phase is then extremely
critical as far as network performance is concerned, but this
issue has not received much attention from the research
community, especially concerning experimental measurements
on recent platforms. Moreover, the Slow Start phase is slowed
down in BoD (Bandwidth on Demand) systems, which are
currently emerging in the market.

In fact, the bandwidth is assigned on the basis of the
stations’ requests, which in turn depend on the current trans-
mission rate and possibly on the transmission backlog of each
station. Requests from the stations need 250 ms propagation
delay on geostationary satellite networks, and the allocation
needs 250 ms to be broadcasted to the stations, meaning that
assignments are always late with respect to incoming traffic
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by at least 500 ms, to which management overheads should be
added. Since the throughput in the Slow Start phase of TCP
increases at each RTT, the allocated bandwidth is always less
than the offered traffic, which accounts for the very long Slow
Start phase we observed in BoD systems.

In [1] we have measured and compared the improvement
introduced by TCP variants and options (TCP Westwood
and SACK option) in recent Linux kernels, by means of
experiments on Skyplex Data, a commercial DVB-RCS satel-
lite platform based on Eutalsat satellite, while [2], [3] doa
simulative analysis of TCP behavior on BoD satellite systems.
In this work we complement that analysis with measurements
focusing on the startup behavior of Linux 2.6 (with and
without SACK option) and FreeBSD 5.4 implementations of
NewReno TCP on the Skyplex platform.

II. T HE SKYPLEX PLATFORM

The measurements reported in this paper are carried out
on Skyplex Data, an experimental satellite network based on
the Skyplex OBP technology run by Eutelsat on the HotBird
6 satellite [4], which relies on DVB-RCS features, while
not being completely DVB-RCS compliant. On Skyplex, IP
packets are encapsulated into an Mpeg-2 transport stream
and transmitted to the satellite using Time Division Multiple
Access (TDMA) uplinks using DVB-RCS format from small
traffic terminals. On board the satellite, these signals are
demodulated, regenerated and sent downlink in a format very
similar to DVB-S.

In order to meet user requirements, the satellite bandwidth
(about 36 Mbps) can be divided in Low Rate channels (LR
at 2.112 Mb/s) and High Rate channels (HR at 6.226 Mb/s),
because each channel has a TDMA structure that allows a
configurable number of time slots per frame. Our experimental
testbed consists of an LR carrier with a TDMA frame of 48
time slot.

The slot assignment is dynamic (BoD). The bandwidth is
requested periodically by each terminal to the network control
center on the basis of its own instantaneous need, and the
time slot are assigned in a best-effort mode. However, a
minimum guaranteed bandwidth equivalent to one slot per
frame (44 kb/s), used for signalling and user data, is reserved
to each traffic terminal.



Linux 2.6 with SACK disabled

Data sent

Ack received

0 50 100 150 200 250 300 350

0

5

10

15

20

time [s]

M
by

te
s

Linux 2.6

Data sent

Ack received

0 50 100 150 200 250 300

0

5

10

15

20

25

30

35

40

time [s]

M
by

te
s

FreeBSD 5.4

Data sent

Ack received

0 10 20 30 40 50 60 70

0

2

4

6

8

10

time [s]

M
by

te
s

Fig. 1. First experiments with TCP over satellite.

III. TCP MEASUREMENTS OVERSKYPLEX

We started by comparing the performance of some com-
monly used TCP stacks on Eutelsat’s Skyplex Data satellite
platform: the results are shown in Fig. 1, which shows how
Linux TCP, with and without SACK option, and FreeBSD TCP
behave on the satellite link.

First experiments with Linux without SACK (TCP’s selec-
tive acknowledgement option) reveal that, on the first connec-
tion to a given destination, performance is severely hindered
because of the first congestion event at the end of the Slow
Start phase, which causes the loss of several segments that
TCP takes a long time to recover. Use of SACK makes recover
much more efficient. Performance on subsequent connections
is good if the cached value of the Slow Start threshold has not
yet expired.

Instead, experiments with FreeBSD show good performance
on all connections, because recent FreeBSD kernels perform
an estimation of the bandwidth-delay product and prevent the
congestion window from exceeding the estimated value, thus
completely preventing packet losses, at least in our setting.
This method produces a slight underutilization of the satellite
channel, while providing excellent startup performance even
on the first connection.

It is apparent from the figures that the inner workings and
the overall performance of these three TCP flavors substan-
tially differ:

• Linux without SACK fills up the bottleneck buffer at the
end of the Slow Start phase, and experiments many packet
losses when the buffer overflows; the subsequent Fast
Recovery phase is not fast enough to avoid a timeout
and a very slow Slow Start phase, that retransmits a high
number of packets already transmitted, whose duplicate
ACKs do not contribute to increasing the congestion
window. This behavior is well known [5].

• Linux with SACK behaves much better, essentially be-
cause the Slow Start phase is fast thanks to the selective
acknowledgments; the resulting throughput is, on aver-
age, as fast as the channel permits, even if the flow of
packets is very irregular.

• FreeBSD uses an algorithm for estimating the bandwidth
available to the TCP connection and the latency of the
channel, and uses these estimates to cap the rate of packet
transmission; the resulting behavior, in this simple case
where a single connection occupies the whole channel, is
almost as efficient on average as Linux and in addition
the packet rate is extremely regular, without even a lost
packet and with an RTT only slightly higher than the
minimum.

IV. FOCUSING ONTCP STARTUP PHASE

In this section we focus on the behavior of TCP during
the Slow Start phase. Fig. 2 compares the first 20 seconds
of acknowledged sequence numbers for two different TCP
implementation transmitting data over the satellite link.We
show the performance of the default FreeBSD and Linux
implementations, reporting for each case 9 connection traces.

We note that at the beginning of the connections the
behaviors of both TCP implementations are similar. We can
distinguish two phases: an approximatively exponential in-
crease of sequence number and a linear increase phase. Indeed,
since during the Slow Start phase the congestion window is
increased by twice the amount of acknowledged bytes, the
ACK reception rate increases exponentially until the TCP
throughput reaches the available channel capacity; after that
point the ACK rate remains constant. However, we notice that
the time to double the congestion window is considerably
longer than the connection round trip time usually observed
over terrestrial networks. As will be clarified in the following,
this phenomenon is to attribute to the BoD policy adopted to
share the satellite bandwidth.

In fig. 2 real traces are plotted together with simulated traces
obtained with a satellite TDMA BoD allocator for ns-2 [6],
which implements the dynamics of bandwidth assignment pro-
tocol. The simulator, validated with comparison with satellite
measurements made on Eutelsat’s Skyplex Data platform, is
useful to assess the TCP behavior under different working
parameters.

Though FreeBSD’s TCP has the same qualitative behavior
of Linux’s TCP during startup, Linux is quicker because
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Fig. 2. Startup phase behavior for TCP Newreno in FreeBSD andLinux.

Linux, according to RFC 3390 [7], sets the initial window
to three packets, while FreeBSD more conservatively uses an
initial window of only one packet.

In the following we develop a simple approximate analytical
model of TCP startup over BoD controlled links. Though this
model is not meant to be accurate at the packet level, it can be
very useful to evaluate the impact of the relevant parameters
on the overall connection completion time. In particular, it
accounts for the delay occurring between bandwidth request
and assignment introduced by the BoD mechanism.

A. Congestion window model

We consider a single greedy TCP connection, with no
packet losses due to corruption and no throughput limitations
due transmit or receive buffers, receive window or bottleneck
buffer. Also, we assume that the initial Slow Start threshold is
big enough that the Slow Start phase does not end before the
channel is saturated. TCP starts to inject packet in a previously
idle satellite terminal that accesses a shared channel using a
rate-based allocation policy. This means that the terminalasks
for an allocation proportional to its incoming traffic rate with
a proportionality factor k that is normally set to 1, and the
BoD controller assigns a share equal to the request, as long
as there is space on the channel. New requests are done once
everyrequest period, denoted byTr, and new assignments are
done once everyallocation period, denoted byTa. This means

that, if the mean round trip time isτ , the averageallocation
delay Da, that is, the delay between making a request and
receiving the corresponding allocation is

Da = τ + Tr/2 + Ta/2. (1)

Note that we speak aboutmean RTT because this is TDMA
system, that is, data at the terminal are not sent continuously,
but in TDMA bursts. Letw(t) be the TCP congestion window
expressed in segments, anda(t) the number of ACKs arrived
at the sender in interval[0 : t]. During the Slow Start phase the
congestion window is increased by one for each ACK arrival,
therefore we have

dw(t) = da(t). (2)

Assuming no delayed ACKs, the ACK arrival rate at the
terminalda(t)/dt is equal to the rate of packets entering the
satellite channel one RTT before, that is, the bandwidth as-
signed to the satellite terminal one RTT before. Consequently,
if enough space is available on the channel, the bandwidth
available to the TCP connection iskw(t)/τ , and we have

dw(t)

dt
=

da(t)

dt
= k

w(t − T )

τ
, T ≡ τ + Da. (3)

In order to take delayed ACKs into account, we should
divide the right hand side of (3) by 2, or alternatively divide
k by 2. However, the TCP implementations we observed
disable the DelACK mechanism during Slow Start in order to
accelerate the growth of the congestion window. Also, from
simulation we have observed that, even when DelACK is
enabled during startup, the interarrival time between ACKs
is larger than the DelACK retransmit timeout for most of the
Slow Start phase, resulting in the transmission of one ACK
for each received packet. For these reasons, in the following
we assume no DelACK.

By transforming equation (3) into the Laplace domain and
denoting byW0 the TCP initial window, we have

sW(s) − W0 = k
W(s)

τ
exp(−sT ) (4)

that can be rewritten as

W(s) =
W0

s − k exp(−sT )
τ

. (5)

Though an exact expression forw(t) could be obtained as an
infinite sum, we prefer to use a second order approximation,
which can be expressed in closed form. Thus, we use the
approximate formexp(−sT ) ≃

1−s T

2

1+s T

2

to obtain

W(s) ≃
W0

s − k
τ

1−s T

2

1+s T

2

=
τ
k
W0(2 + sT )

s2 τ
k
T + s(2τ

k
+ T )− 2

, (6)

which has rootss1, s2

s1, s2 =
1

T



−1 −
ρk

2
∓

√

1 + 3ρk +

(

ρk

2

)2


 , ρ ≡ T/τ

(7)



We can now write an expression for the time evolution of the
congestion window from the beginning of the Slow Start phase
until the moment the channel is saturated:

w(t) = A exp(s1t) + B exp(s2t), (8)

whereA andB are appropriate constants. The expression (10)
holds until t = ts, the moment when the TCP ratew(t)/τ
becomes equal to the available capacityµ (pkt/sec). Fort > ts
the ACK rate is capped byµ, and the growth of the congestion
window depends on the exact implementation, as mentioned
above.

In order to compute the value ofts, we observe that the
root s2 > 0 gives rise to an increasing exponential while the
root s1 < 0 to a decreasing one. Hence, forts > 1/s1 we can
neglect the first term of expression (8) and assumew(ts) ≃

B exp(s2ts) = µτ , thus obtaining

ts ≃
1

s2
ln

(

µτ(s2T − s1T )

W0(2 + s2T )

)

. (9)

By transforming (8), equating it to (5) and solving forA
andB in s = s1 ands = s2, we can write (8) as

w(t) = W0
(2 + s1T )es1t − (2 + s2T )es2t

s1T − s2T
for 0 ≤ t ≤ ts,

(10)
which makes it clear that, during the Slow Start phase on a
BoD system using a rate-based policy, the congestion window
evolution has an approximately exponential evolution with
a time constant1/s2. This is equivalent to having a fixed-
allocation policy together with an increased RTT depending
on both the allocation delay throughρ (see (7)) and the
proportionality factork:

τeq(ρ, k) = τ
1 + ρk

2 +

√

1 + 3ρk +
(

ρk
2

)2

1 + k
2 +

√

1 + 3k +
(

k
2

)2
(11)

The expression forτeq(ρ, k) is an increasing function of
ρ, and consequently of the allocation delay. This means that,
from the point of view of a TCP connection that has not yet
reached channel saturation, increasing the allocation delay Da

on a rate-based BoD allocation system has the same effect
as increasing the round trip delayτ on a fixed allocation
system. So, generally speaking, any rate-based BoD system
slows down the throughput growth of TCP connections. This
slowdown can be partially compensated by choosing a larger
k value for the BoD system, as discussed below.

B. Transfer time during startup

Using (8), and neglecting the exponential termexp(s1t),
we can estimate the amount of dataN(t) transferred in the
time interval [0 : t]. To this purpose we integrate the TCP
throughputw(t)/τ :

N(t) =
B(exp(s2t) − 1)

s2τ
. (12)

From ts to the time tl when the first congestion loss
is detected, the TCP throughput is limited by the channel
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Fig. 3. Time needed to send a given volume of data for different values of
ρ and of the initial windowW0.

available capacityµ. The two phases are put together in the
following expression

N(t) =

{

B
s2τ

exp(s2t) −
W0

k
for 0 < t ≤ ts

N(ts) + µ(t − ts) for ts < t < tl
, (13)

from which one computes the amount of data transmitted
before saturation, that is, for0 < t ≤ ts

N(ts) ≃
µ

s2
−

W0

k
(14)

and the timeD required to transmitN packets (forD > 1/s1)
as a function of the initial windowW0, the round trip timeτ
and the value ofT

D =

{

1
s2

ln
(

kN+W0

W0

s2T (s2T−s1T )
ρ(2+s2T )

)

N ≤ N(ts)
1
µ
(N − N(ts)) + ts N > N(ts)

. (15)

Fig. 3, using (15), shows the time needed to complete
transmission as a function of the data volume, for initial
windows of 1, 2 and 3 packets. Three sets of curves are
plotted: one for a value ofρ corresponding to our actual
experimental setup, one withDa = τ ⇒ ρ = 2, that is an ideal
condition where the allocation delay is as small as theoretically
possible for BoD, and one withDa = 0 ⇒ ρ = 1, which
means no allocation delay, that is the same as a statically
preassigned bandwidth share. The value ofρ corresponding
to the experimental Skyplex data platform is computed from
parameters measured in real tests:τ = 750 ms,Tr = 273 ms,
Ta = 819 ms andk = 1. The symbols on the curves mark the
momentts when saturation is reached.

The vertical separation between curves with differentρ
values and same initial window is the delay introduced by
the BoD mechanism. The graph highlights that BoD increases
significantly the completion time of short connections and de-
lays the moment when channel saturation is reached, resulting
in several seconds of poor bandwidth utilization.

The initial window is another parameter influencing the
startup performance. In fact, choosing a larger initial window
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Fig. 4. Simulation for varyingk factor

may save up to two transmission RTT with minimal impact on
network congestion [7]. Since the RTT over satellite links is
much larger than in terrestrial networks, a largerW0 can lead
to a considerable time saving. We stress here that this effect is
even greater in the presence of rate-based BoD policies, which
have the same effect as increasing the RTT.

V. CONSIDERATIONS ON PARAMETERS CHOICE

As previously noted, the harmful effect of BoD on TCP
startup could be compensated by choosing a larger value of
the ratiok between allocated and requested bandwidth. Ideally,
the BoD scheduler should provide to a starting TCP connection
enough bandwidth to double the congestion window every
RTT so to increase the throughput at the fastest possible rate.

The condition allowing the TCP connection to exploit the
assigned share without buffering and without wasted channel
resources is that the TCP throughput be equal to the assigned
share

w(t)

τ
= k

w(t − T )

τ
, (16)

which translates intok = exp(Ts2) which, for ρ = 2.73 as in
the case of Skyplex Data, impliesk = 4.8.

These considerations are backed by the traces in Fig. 4
that illustrates a parametric simulative experiment wherewe
evaluate the effect of changing thek factor on connection
duration for several volumes of data to transmit and on
utilization of assigned channel share. Lines plotted in Fig. 4
are averaged over all the possible offsets of TCP starting time
with respect to DVB frame. As expected, completion time
improves with increasingk, and gain diminishes up to a value
of k near 4.8, as previously computed. Improvements are most
significant for bigger data volumes.

On the other hand, channel utilization worsens with increas-
ing k, and worsening is most significant for smaller volumes
of data.

VI. CONCLUSIONS

Experimental and simulative studies on Eutelsat’s Skyplex
Data system highlighted how rate-based Bandwidth on demand
systems can significantly slow down the transmission of small
volumes of data using TCP. This observation is significant
because most transmissions on the Internet are made of short
TCP connections, and because BoD satellite systems are going
to be more and more diffused.

We presented an analytical modeling of this phenomenon,
which is similar to what would happen on a traditional fixed-
allocation satellite system if the round-trip time was increased.
We show that a small change to the allocation policy can bring
significant benefits to short TCP connections, but that thereare
also drawbacks in terms of channel utilization, an important
matter because of the costs associated to satellite bandwidth.

Further studies are required in order to modify the basic
rate-based allocation algorithm to make it more responsiveto
starting TCP connections and similar types of traffic, such as
those based on TCP Friendly Rate Based (TFRC) algorithms.
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