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Abstract—A  feasibility  study  where  small  wireless 
transceivers  are used to classify some typical  limb movements 
used  in  physical  therapy  processes  is  presented.  Wearable 
wireless low-cost commercial transceivers operating at 2.4 GHz 
are supposed to be  widely deployed in indoor settings  and on 
people's  bodies  in  tomorrow's  pervasive  computing 
environments.  The  key  idea  of  this  work  is  to  exploit  their 
presence  by  collecting  the  received  signal  strength  measured 
between those worn by a person. The measurements are used to 
classify a set of kinesiotherapy activities. The collected data are  
classified  using  both  Support  Vector  Machine  and  K-Nearest 
Neighbour  methods,  in  order  to  recognise  the  different 
activities.

Index  Terms— Classification  of  human limbs  activities,  K-
Nearest  Neighbour  (K-NN),  Received  Signal  Strength  (RSS), 
Support Vector Machine (SVM), wearable wireless devices.

I. INTRODUCTION

HE increasing improvements of wireless technology and 
miniaturized  sensors  made possible the  proliferation  of 

wireless  sensor  networks.  These  communications  networks 
are  one  of  the  first  real  world  examples  of  pervasive 
computing:  they are  composed  of  small,  smart  and  cheap 
sensing  devices  that  promise  to  eventually  permeate  the 
environment. We may face a not so distant future where small 
sensors,  all  capable  of  wireless  communication,  are 
ubiquitously deployed  in  the  environment  and  on  people's 
body.

T

Extensive attention  has  been  focused in  the literature  on 
wireless  sensor  networks,  especially  in  the  framework  of 
wireless  body sensor  networks  [1].  In  particular,  wearable 
wireless  systems  were  developed  to  detect,  track  and 
understand people’s behaviour. In recent years, the detection 
of body posture and activity received a significant interest for 
their  application  in  sports,  medicine  and  military. 
Recognizing people’s activities is also a key issue in Assisted 
Living (AL) applications, where it can be useful for example 
to rate how a person performs routine activities [2,3].

One further  field  of application  is  kinesiotherapy,  where 
the  aim  is  to  provide  monitoring  of physical  therapies  for 
patients who have suffered a stroke, multiple sclerosis, joint  
replacements or reconstructions, amputation, brain and spinal 

cord injury, or some motor function disability resulting from 
Parkinson’s  disease  [4-6].  For  these  cases,  wireless  body 
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sensor  networks  could  replace  the  existing  wired  telemetry 
systems [7], allowing remotely supervised kinesiotherapy. In 
a  typical  wearable  Wireless  Body Area  Network  (WBAN) 
scenario, a patient wears some sensors that form an on-body 
sensor network, while an off-body base station registers data 
collected  by the  WBAN. The  therapy effectiveness  can  be 
evaluated  by specialized  medical  operators  performing  an 
analysis  on  the  registered  data.  Continuous  remote 
monitoring  allows  the  patient  to  have  a  normal  life  by 
reducing the inconvenience of regular  visits to the therapist.  
The  purpose  of using  a  WBAN is  to  improve health  care 
quality  and  efficacy,  and  also  to  reduce  health  assistance 
costs. Studies relative to WBANs usually include the use of 
various transducers like accelerometers and gyroscopes [6,8]. 
Alternative  approaches  include  motion  capture  systems [9], 
which  are  based  on  video  cameras  that  can  follow  the 
movements  of a  number  of markers  placed  on  the  human 
body in  order  to reconstruct  its  activity.  These systems are 
expensive and require a large number of constitutive elements 
(cameras and markers). Research activities were also carried 
out to monitor body movement during sleep, because people 
with  sleep  deficits  may  experience  impaired  performance, 
irritability,  lack  of  concentration,  and  daytime  drowsiness. 
This  application  is  especially  relevant  for  researchers 
interested  in  children  or  adults  with  dementia.  In  [10], 
movement detection and classification is performed by means 
of thermistors, video cameras and load cells placed at the bed 
frame feet.

In  this  paper wearable wireless transceivers were used to 
classify some typical  limb kinesiotherapy exercises that  can 
be performed during a rehabilitation/recovery process. Three 
low-cost Crossbow IRIS transceiver modules [11] placed on 
the limbs and abdomen plus an off-body fixed node form the 
wireless network. The objective is to recognise the performed 
activities using  only the Received Signal  Strength  (RSS),  a 
value  that  can  be  readily  obtained  from  low-cost  wireless 
communication  devices.  There  are  at  least  two  possible 
scenarios where this approach, if successful, can be useful. In 
the first, futuristic scenario, wireless sensors are ubiquitous in 
the  environment  and  on the  patient's  body. In  this  case no 
additional  equipment  is  required  to  recognise  simple  limb 
movements.  In  the  second  scenario,  various  sensors  (i.e. 
accelerometers,  gyroscopes,  pressure  sensors)  are  placed on 
the  patient's  body  to  recognise  the  movements.  In  the 
common case of the sensors using wireless communications, 
exploiting  the  RSS  measurements  can  give  an  additional 
source of information at no additional equipment cost.

A wide variety of techniques and algorithms are found in 
the  literature  to  classify  measurements  for  posture  and 
movement  recognition.  Most  of  them  are  based  on  traces 
collected  using  accelerometers  and  gyroscopes.  Techniques 
range from feed-forward back propagation neural networks [8
] to discrete wavelet transforms [10], support vector machine 
(SVM) techniques [12,13] and hidden Markov models [14]. 
In this paper Support Vector Machine (SVM) and K-Nearest 
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Neighbour  (K-NN)  classification  techniques  were 
implemented  to  recognise  different  activities,  due  to  their  
success in many classification problems [12,13]. Our purpose 
is  not  to  present  a  finely  tuned  and  well-engineered 
algorithm,  but to show that  standard  classification  methods 
have  the  potential  to  solve  the  problem  with  acceptable 
accuracy.

The paper is organized as follows. Section II presents the 
equipment  architecture  and  some typical  human  body limb 
activities that can be used in a rehabilitation/recovery process. 
The  two methods  used to  classify the  limb movements  are 
also briefly described. Results are reported and commented in 
Section III and concluding remarks are drawn in Section IV.

II.METHODOLOGY

A. Equipment set-up

The  WBAN was  formed  by Crossbow IRIS  transceivers 
(motes)  operating  at  2.4GHz  (ISM  band)  according  to  the 
IEEE 802.15.4 protocol. The motes were placed on the body 
and a fixed off-body node was connected to a PC. The motes 
form an ad hoc on-body wireless network with a tree topology 
determined  by the relative location  on the  body and  by the 
wireless link characteristics (see Fig. 1). The gateway was the 
root  of  the  entire  network  and  was  connected  to  the 
processing server; the TX mote was placed at the centre of the 
front  waist  and  the  RX motes  (namely  S1  and  S2)  were 
placed on either the right  arm or the right  leg. Each device 
was fixed to the arm/leg with an elastic band. The TX mote 
periodically sends a beacon packet with a fixed transmission 
power (3dBm).  The RX motes sample the received beacon, 
estimate  the  RSS  and  send  it  to  the  gateway  node.  The 
sampling frequency should be chosen considering on one side 
the computing constraints and networking overhead – which 
are  both  direct  responsible  of  power  consumption  in  the 
sensors – and on the other side RSS waveform reconstruction 
accuracy. Given the relatively slow motion, it was possible to 
set the sampling rate to a no-compromise value of 8 Hz.

Measurements  were  performed  on  two  different  healthy 
individuals:  a  1.58 m height,  53 kg weight  25-years  female 
(hereafter user A) and a 1.77 m height, 75 kg weight 24-years 
male  (hereafter  user  B).  The  environment  consisted  of an 
office room. From a wave propagation point of view, this is 
similar  to  a  home  environment/single  room  hospital 
environment.  Big  rooms  or  alleys  exhibit  different 
propagation  characteristics,  even  if  the  experience  of  the 
authors  suggests  that  it  is  unlikely  that  the  different  
propagation  environment  does  in  fact  make  a  significant 
difference for motes placed on body. From a point of view of 
interference with  other  devices transmitting  in  the 2.4 GHz 
band,  the  office environment  is  more  severe than  a  typical 
home environment.

Fig. 1. Wearable wireless network. TX is the transmitter placed at the centre of 
the front waist, S1 and S2 are the receiving motes placed on the arm/ leg.

A serious comparison with a hospital  environment  would 
require  a  dedicated  measurement  campaign,  but  in  the 
authors' judgement it is not crucial for a feasibility study.

B. Arm and leg movements

For arm activity recognition, the RX motes were placed on 
the right arm, one at the wrist and one on the upper part of 
the arm as shown in  Fig. 1. For leg activity recognition, the 
RX motes were placed on the right leg, one on the thigh just  
above  the  knee  and  one  just  below  the  knee.  The 
kinesiotherapy  activities  performed  in  this  paper  are 
summarized in Table I.  During the measurements the subject 
was standing and only the arm/leg with the sensors on it was 
performing the activities described in Table I.  Each exercise, 
lasting  for  30  seconds,  was  repeated  fifty times.  The  fifty 
repetitions,  for both volunteers,  were performed in  different 
days,  to  avoid  fatigue  and  to  verify  the  experiment 
repeatability.  During  the  measurements,  the  activities  were 
performed with a slow rate of 20-30 oscillations per minute. 

C.Classification methods

Classification is a procedure that assigns a given object to 
a  given  number  of  classes.  A classifier  is  trained using  a 

TABLE I
SCHEMATIC REPRESENTATION OF ARM/LEG ACTIVITIES CONSIDERED DURING THE 

ANALYSIS 
Arm-

Activity1
The arm was 
oscillating from 
straight down 
(parallel to body) to 
horizontal straight 
ahead.

Leg-
Activity1

The leg was 
oscillating 
ahead.

Arm-
Activity2

The arm was 
oscillating from 
straight down to 
horizontal (open arm
).

Leg-
Activity2

The leg was 
oscillating 
behind.

Arm-
Activity3

The forearm moved 
from straight down to 
horizontal straight 
ahead.

Leg-
Activity3

The leg was 
performing a 
complete 
oscillation 
ahead-
behind.

Leg-
Activity4

The leg was 
oscillating on side.

Leg-
Activity5

Lifting the 
knee.
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training dataset where the class of each object is known. After 
training, the classifier should be able to assign a new object to 
its right class: in the testing phase the classifier is applied to a 
testing dataset. By comparing the classifications made on the 
testing dataset, the performance of the classifier is evaluated.

In our case, each activity (a class) produced two traces (one 
for  each  receiver,  S1 and  S2),  each  composed of 240 RSS 
samples. Each pair of traces is an object to be classified.

Most  classifiers  work  in  a  feature  space,  which  is  a 
multidimensional space where each object is represented by a 
point.  In  the  feature space,  the coordinates of the point  are 
the  values  of  the  object’s  features.  A  feature can  be  any 
quantity that is significant for the object. Usually, features are 
normalized, so that all points lie in the unity hypercube of the 
feature  space.  The  most  important  step  in  classification 
problems is the  choice of relevant  features.  The number  of 
features should be as low as possible to avoid overfitting and 
reduce  computational  complexity.  Their  number  should  be 
sufficient  to  distinguish  the  objects,  namely to  assign  each 
activity to the right class. 

In  our  case,  each  object  (a  pair  of  RSS  traces)  was 
identified  by up  to  five  features,  as  described  in  the  next 
section. The specific features extracted from the RSS traces 
were chosen using Weka, a collection of tools for data pre-
processing,  classification,  clustering   and  more  [15].  Weka 
was also used to compare  the performance of two different 
classifiers working in the same feature space.

K-Nearest  Neighbour (K-NN)  is  a  supervised  learning 
algorithm where new objects are classified based on a voting 
criteria:  the  K  nearest  objects  from  the  training  set  are 
considered,  and  the new object is  assigned  the  class of the 
majority of those. The training phase of the K-NN algorithm 
consists  in  storing  the  features  and  the  class  label  of  the 
training  objects.  In  the  classification  phase,  an  unlabelled 
object  is  classified  by  assigning  the  most  frequent  label 
among those of the  k training samples nearest to it.  Various 
distance metrics can be used, the Euclidean distance being the 
most common. In this work we used the most basic settings 
for  the  algorithm:  Euclidean  distance  and  k set  to  1.  This 
means that the class label chosen was the same as the one of 
the closest training object.

Support Vector Machine (SVM) is a sophisticated learning 
technique that  can  deliver  good detection  and  classification 
performance.  In  its  basic  form  SVM  is  a  binary  linear  
classifier, meaning that it assumes linear  separability of two 
classes  of  data  and  attempts  to  find  a  hyperplane  in  the 
feature  space separating  the  data  points  of the  two classes. 
The optimum separation is achieved by the hyperplane  that  
maximizes its distance from the marginal data points on each 
side  (the  support  vectors),  that  is  the  maximum-margin  
hyperplane.  Computation  of  the  hyperplane  can  be  made 
using  quadratic  programming,  a  computationally  efficient 
optimization technique.

The first improvement on the basic form of the SVM is to 
account  for data sets that  can not be clearly separated by a 
hyperplane,  by  using  soft  margins.  This  means  that  the 
algorithm chooses a trade-off between a large margin and the 
possibility  of  some  points  being  misclassified.  The  second 
improvement,  which  makes  the  method  so powerful,  is  to 
map  the  non  linearly  separable  classes  into  a  high  

dimensional feature space where the classes become linearly 
separable  using  a  non-linear  kernel  function [16,17].  What 
makes  this  technique  computationally  efficient  is  that,  by 
choosing  an  appropriate  kernel  function,  quadratic 
programming can still be applied [16,17]. 

In  this  work,  the  classical  Pearson  kernel  function  was 
chosen as one of the best performers. Binary classifiers can be 
combined to solve multiclass problems. An  one-against-one 
approach  was  used  to  tackle  the  multiclass  classification 
problem.  The  classification  is  made  by a  max-wins voting 
strategy.  A  specific  classifier  is  trained  for  every  pair  of 
classes (in our case a class was associated to a specific activity
). For a test sequence, each classifier assigns one vote, and the 
object  is  assigned  to  the  class  with  the  highest  number  of 
votes.

For both classification methods, classification performance 
was computed by using a 10-fold cross-validation technique. 
An  object  set  (a  pair  of  traces,  for  each  exercise)  was 
randomly subdivided into 10 equal-sized partitions: 9 of them 
were used as the training dataset and the last one was used as 
the  testing  dataset.  The  same  procedure  was  repeated  10 
times, until each partition was used for testing.  In  this way, 
each object was used exactly once for testing.

III. RESULTS AND DISCUSSIONS

A. Preliminary RSS traces analysis 

Fig. 2  presents  an  example  of  typical  RSS  30  seconds- 
registrations  for  arm  and  leg  activities.  The  movement 
periodicity  is  clearly  apparent,  as  well  as  the  variations 
between RSS traces relevant to different activities. 

The  activity  velocity  can  be  identified  using  standard 
methods for fundamental frequency estimation.  In Fig. 3, an 
example  of  the  Fourier  transform  of  an  RSS  trace  is 
presented, when Activity 1 was performed for 30 seconds at 
two  different  rates:  24  oscillations  per  minute  and  72 
oscillations per  minute.  Two spectral  components  appear  at 
around 0.4Hz and 1.2Hz, for both sensors (S1 and S2), which 
clearly correspond to the slow rate and fast rate, respectively.

B. Feature extraction

The first step of the classification procedure was to identify 
a limited number of features that act as the “fingerprint” of a 
trace.  An  initial  large  set  of possible features  was defined, 
from which the best performers were chosen using the feature 
selection  tools  provided  by  Weka.  In  the  set  of  possible 
features we considered both time-independent and time-series 
based statistics. 
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Fig. 2. Samples of RSS traces for arm and leg activities, for both sensors S1 and 
S2.

As far  as  time-independent  statistics  are  concerned,  the 
ones involving only one transceiver (either  S1 or S2) were: 
mean value µ, standard deviation  σ, skewness, kurtosis. The 
one involving both transceivers (S1 and  S2) was the cross-
correlation ρ. 

As  far  as  time-series  based  statistics  are  concerned,  we 
considered  the  level  crossing  rate  (LCR)  at  four  different  
thresholds,  firstly computed on both devices separately,  and 
secondly on the difference of the devices’ RSS measurements. 

 

Fig. 3.  RSS trace Fourier transform of the arm Activity 1: (a) slow activity (24 
oscillations per minute), (b) fast activity (72 oscillations per minute).

The  LCR  is  a  statistical  parameter  that  quantifies  how 
often  the  signal  crosses  a  given  threshold  in  the  positive-
going direction. The four thresholds considered in this work 
were LCR1 at μ - 0.5σ , LCR2 at μ +0.5σ , LCR3 at μ - σ  and 

LCR4 at μ+σ . 
A features short list was selected from the initial large set 

data in  order  to optimise classification performance. If both 
transceivers S1 and S2 are used, the list of features includes 
the mean values, µ1 and µ2, the standard deviations, σ1 and σ2, 
and the correlation coefficient  ρ.  If only one sensor is used, 
the  feature  list  includes  the  mean  value  µ,  the  standard 
deviation σ, LCR1 and LCR2.

An  example  of  how  some  features  (LCR1,  µ,  σ) are 
distributed is shown in Fig. 4. As shown in Fig. 4a,  for the 
arm  exercises,  Activity 3  is  visually  well  separated  from 
Activity 1 and Activity 2, which means that Activity 3 can be 
well  recognized.  For  the  leg  exercises,  Fig.  4b shows that 
Activity 4 and  Activity 5 can  be easily recognized,  whereas 
activities 1, 2 and 3 are more difficult to identify and may be 
confused with others.

C.Classification results

Performance of the proposed system is measured in terms 
of  error rate or, equivalently,  of  matching rate.  The former 
was defined  as  the number  of misclassifications divided by 
the  total  number  of  trials,  while  the  latter  is  its 
complementary (i.e. 1 minus the error rate).

Fig. 5a shows the error rate for the arm as a function of the 
number of features, for both persons (users A and B) and both 
SVM and K-NN algorithms. Firstly, two features of the two 
devices were considered (µ1  and µ2) achieving about 70% and 
85% of matching rate for the users A and B, respectively. The 
matching  rate  increases  with  the  number  of  features,  as 
expected. In fact, when using five features instead of four (µ1, 
µ2,  σ1 ,σ2 and the fifth feature  ρ) 90% and 100% matching 
rates were achieved for the users A and B, respectively.  In  
this  case  correlation  ρ does  not  significantly  improve  the 
performance.  Performance  in  terms  of error  rate  shown  in 
Fig. 5a is similar for both SVM and K-NN algorithms. 

In order to evaluate which transceiver performs better, the 
performance  of  the  K-NN  algorithm  is  shown  (SVM 
performance being similar).
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Fig. 4.  Two examples representing objects in their feature space (mean, standard deviation and LCR1) for the (a) arm activities and (b) leg activities.

Fig. 5b shows the classification error rate for both users, A 
and B, for each sensor S1 and S2, as a function of the number 
of features.  The  features  considered  were  μ,  σ,  LCR1 and 
LCR2 for each sensor. Sensor S2 exhibits better performance, 
probably  because  it  experienced  greater  oscillations  with 
respect to sensor S1, and hence greater RSS variations.

Fig. 5c shows the true positive (TP) and the false positive 
(FP)  rates,  considering  user  A,  both  algorithms,  and  five 
features  (µ1,  µ2,  σ1, σ2, ρ ).  For  a  given  activity  Ac,  true 
positives  are  the  correct  classifications  with  respect  to  the 
total  number  of objects  (fifty exercises  in  our  case),  while 
false positives  are  the  erroneous activity classification  with 
respect to the number of times the algorithm chooses Ac. For 
the arm, Activity 1 exhibited 94% TP and 20% FP, Activity 2 
was classified with 90% TP and 2% FP, and Activity 3 was 
classified  with  90%  TP  and  4%  FP,  when  the  K-NN 
algorithm was chosen. Activity 1 presented the highest value 
of FP, which means that  it was the most often misclassified 
one,  but  at  the  same  time  it  had  the  highest  value  of TP, 
making it the most correctly recognized movement. When the 
SVM algorithm was used, Activity 3 was the most correctly 
recognized  movement,  while  Activity 1 was the  most  often 
misclassified one.

Fig. 5d  shows  TP  and  FP  rates  for  user  A  using  four 
features of sensor S2 (μ,  σ, LCR1 and  LCR2) and using both 
classification  algorithms.  Activity 3  was  always  recognized 
when using K-NN (100% TP) and was rarely confused with 
other  activities (2% FP).  Activity 1 shows 98% TP and 7% 
FP, while Activity 2 was classified with 97% TP and never 
confused with the other activities (0% FP).

The same analysis as in the arm case was performed for the 
leg case. Specifically, Fig. 5e shows the error rate for the leg 
as a function of the number of features, for both users and for 
both  algorithms.  Firstly,  the  two  features  µ1 and µ2 were 
considered, which achieve about 35% and 20% of error rate 
for  the  A  and  B users,  respectively.  When  the  number  of 
features is increased to five (µ1,  µ2,  σ1, σ2, ρ ),  performance 
improves. The error rate decreases to about 20% and 10% for 
the A and B users, respectively. Fig. 5f shows the error rates 
for both users as a function of number of features,  for each 
sensor. The features used for each sensor were μ, σ, LCR1 and 
LCR2. Due to the similar results achieved with SVM and K-
NN,  only the  results  obtained  with  K-NN  are  shown.  As 
opposed to the arm case, both sensors give similar results. 

Fig.  5g shows the  TP and  FP matching  rates  for user  A 
when  the five features  µ1,  µ2,  σ1, σ2, ρ and  both  algorithms 
were used. Activity 5 was always correctly recognized (100% 
TP),  and  never  confused  with  other  ones,  (0%  FP).  This 
happens  probably  because  it  was  the  only  movement 
significantly different from the other ones.

Fig. 5h  shows  TP  and  FP  rates  for  user  A  using  four 
features (μ,  σ,  LCR1,  LCR2) of sensor S2.  Results for both 
classification  algorithms  are  shown.  Also  in  this  case, 
Activity  5  was  always  recognized  (100%  TP)  and  never 
confused with other activities (0% FP). 

Finally,  confusion matrices for the analyzed classification 
problem are  presented  in  Fig.  6.  Confusion  matrices  are  a 
compact  graphical  representation  where  each  row  of  the 
matrix  corresponds to the activity assigned by the classifier 
(predicted class),  while  each  column represents  the  activity 
performed (actual class). 

A classification method with ideal  performance will  only 
have bars on the main diagonal of the matrix. The more bars 
on the non-diagonal cells are high, the worst the classification 
performance.  As far as the arm exercises are concerned, for 
SVM  and  the  two-features  case  (μ1  and  µ2)  there  was 
moderate confusion between Activity 1 and Activity 2. In fact, 
46%  Activity 2  was  misclassified  as  Activity 1,  and  about 
10% were misclassified as Activity 3. 

On  the  other  hand,  Activity 1  and  Activity 3  were  quite 
well recognized even with only two features.  Activity 2 was 
less recognized probably because the antenna position of the 
transceiver S2 is more in a Line of Sight region (LOS) with 
respect  to  the  other  cases.  As  expected,  the  greater  the 
number of features, the less the error rate. No more than 8% 
of  the  Activity 1  was  misclassified  as  Activity 2  and  vice 
versa. K-NN and SVM algorithms behave similarly.

As far  as the leg exercises are  concerned,  for both SVM 
and  K-NN,  Activity 4  and  Activity 5  were  very  well 
recognized and not confused with other leg movements, even 
for only two selected features.  On the other  hand,  the first  
three activities were misclassified, probably because they are 
quite similar to each other. Increasing the number of features 
the  rate  of  misclassification  decrease,  as  expected. 
Specifically,  for  K-NN  and  five  features,  about  17%  of 
Activity 3  was  misclassified  as  Activity 2,  and  7%  as 
Activity 1.
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Fig. 5.  Classification performance using SVM and K-NN for arm and leg activities: a) and e) show the error rate as a function of the number of features for both users 
A and B, for arm and leg activities respectively; b) and f) show the error rate as a function of the number of features for each sensor, both users, for arm and leg 
activities respectively. The features considered were μ, σ, LCR1 and LCR2 for each sensor. Classification performance using SVM and K-NN , single sensor S2: c) and 
g) show True Positive and False Positive Rates for each activity, user A, five features (μ1,  μ2,  σ1 ,  σ2,   ρ ), for arm and  leg  activities respectively. Classification 
performance using K-NN: d) and h) show True Positive and False Positive Rates for each activity, user A, four features of the sensor S2 ( μ, σ, LCR1, LCR2), for arm 
and leg activities respectively.

Similarly to the arm case, when Activity 2 was performed, 
the antenna position of the transceiver S1 was closer to a non-
LOS  condition,  which  may  be  the  cause  for  a 
misclassification of Activity 3 as Activity 2 and Activity 1. 

The consequences of transceivers not being in sight of each 
other needs further investigation: while passing from a LOS 
to a non-LOS condition during exercises might be beneficial,  
as it has the potential of amplifying the RSS variations during 
the  movement,  complete  lack  of  LOS  during  the  whole 
exercise  may  be  detrimental,  because  it  has  potential  for 
lowering  the  overall  strength  of  received  signal  and  its 
information content.  These considerations,  however,  are not 
final  and  further  studies  are  necessary  on  the  optimal 
placement  of  transceivers  on  body  and  the  outcomes  of 
suboptimal placement.

IV. CONCLUSIONS

Automatic recognition of some arm and leg exercises was 
addressed  for  use  in  orthopedic  physical  therapy: 
measurements  showed  that  it  is  possible  to  use  low-cost 
transceivers  to  classify  limb  activities.  Good  classification 
performance  can  be  achieved  by using  only  the  received 
signal  strength  measurements  relevant  to  three  wearable 
wireless  sensors.  A  simple  K-NN  classifier  and  a  more 
sophisticated  SVM  classifier  yielded  similar  performance, 
suggesting that the choice of the classifier is not critical. The 
features  considered  for  classification  are  computationally 
inexpensive and only a few (three to five) were sufficient to 
obtain  a  good  identification  accuracy,  even  for  relatively 
similar movements.

The  main  benefit  of  using  received  signal  strength 
measurements  is  that  they  are  readily  available  on  small  
wireless communication devices. We envision that  these are 
going to be extensively deployed in  indoor environments  in 

the near future, for communication and control purposes. The 
idea is  to exploit  the  ubiquity of wireless sensors  to obtain 
measurements “for free”. The outcome of this feasibility study 
is  twofold.  Firstly,  it  is  possible  to  recognize  human  limb 
movements without the need of ad hoc sensors, provided that  
wireless transceivers are already installed on the human body. 
Secondly,  if dedicated  sensors  are  already installed  for  this 
purpose,  their  results  can  be  complemented  with  RSS 
measurements,  thus  potentially  improving  accuracy  and 
reliability.
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