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Abstract—We examine the indoor single-room localisation
problem while using multiple fixed transmitters (anchors) and
multiple mobile receivers placed on the user (mobiles). Anchors
transmit a periodic beacon that the mobiles receive and of which
they measure the received power level value (RSSI). Using this
information only, which requires no specialised hardware, the
mobiles estimate the position and orientation of the user. Many
methods have been proposed to tackle this problem. In this paper
we describe a purely theoretical procedure that aims to evaluate
the maximum attainable performance of any real methods using
RSSI for localisation purpose. Our analysis we present is based on
a fine grid of RSSI values in a room, which are computed via ray-
tracing, and a maximum-likelihood approach to localisation. Here
we illustrate the performance gains of using multiple mobiles
versus using a single one and and the attainable performance of
user orientation estimation.

I. INTRODUCTION

The presence of prospective high number of wireless trans-

mitters in indoor spaces has motivated researchers to inves-

tigate whether their built-in received signal strength indicator

(RSSI) could be exploited to gain information on the relative

position of a receiver with respect to a number of transmitters.

For this reason the RSSI range-based localisation systems that

use inexpensive, non-dedicated wireless devices have gathered

great attention in the last years. Even though RSSI meters are

not built to this end, but rather to give information to the

higher communication protocol layers about the status of the

communication link, their usage is highly attractive, because

the information they give is obtained almost “for free”. As a

consequence, many studies exist which, analytically, through

simulations or through real measurements, analyse how a

mobile can use RSSI relative to multiple wireless transmitters

(anchors) to compute its position [1], [2]. This approach is

popular because no additional hardware is required on the

nodes for localisation. In [3] the authors find that range-based

methods (such as RSSI-based approaches) perform better than

connection-based ones under a given set of conditions. We

find that these conclusions are also consistent with the results

sketched in our preliminary work [4].

The basic idea in RSSI-based localisation is to compare the

measured RSSI values to a model of RSSI for each position

and then identify the position that gives the best match. The

two most common models are the path loss model and the

dedicated power map. The path loss model models the RSSI
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value in dB as a linearly decreasing function of transmitter-

receiver distance. This method suffers from high ambient noise

level and from multi-path effects, particularly when there is no

line of sight between transmitter and receiver. The dedicated

power map model requires to know the RSSI values in a

number of points scattered in the environment and save these

in a database (i.e. a map). This can be done using an off-

line measurement campaign or by simulating the environment

with one of several techniques (e.g. ray-tracing [4]). The set

of RSSI values that are collected for each position in the map

from various anchors is called a fingerprint of that position,

and the method is also known as fingerprinting. Fingerprinting

methods usually provide better performance than path loss

model-based methods [5], [6], [7], [8].

In this paper we concentrate on evaluating what is the

maximum attainable performance of a practical localisation

method in a given environment. In order to provide this

result, we start form a detailed two-dimensional map of an

office room obtained with a 3-D ray-tracing program. The

map is based on a 3 cm square grid at a height of 90 cm

from the floor. The room is approximately 5 m by 7 m and

contains three pieces of furniture: a low cabinet, a high cabinet

and a blackboard. The map provides the RSSI measured in

each node of the grid by a vertical dipole antenna. On the

walls and ceiling of the room 18 transmitters are placed in

different points and with various dipole antenna orientations.

We assume that the receiver has a positioning standard error

of 10 cm, an orientation standard error of 0.3 radians and

a standard error on received power of 2 dB, all errors are

Gaussian. We then place the receiver on a given position and

orientation and read from the map what is the RSSI it gets

from each of the anchors. More precisely, we read (with a

received power error) the RSSI it receives from each of the

anchor as if it were placed at a position and orientation equal to

actual one plus a positioning and orientation error. Using the

RSSI readings, we then evaluate the position of the mobile

using a maximum-likelihood technique. We claim that the

average performance of this procedure (which is too complex

to be practically usable as a real localisation method) is a

lower bound on the error attainable by any real localisation

method [4].

The contribution of this paper with respect to our previous

work is that here we evaluate how much the lower error bound

on position estimation is improved when we place multiple

receivers on the mobile. Also, we evaluate the attainable

precision of orientation estimation, something that can only

978-1-4244-5864-6/10/$26.00 c© 2010 IEEE



be done when using multiple receivers. As we just said,

this study does not lend itself to practical implementation

of a localisation method, but rather provides insight into

performance assessment by using either one or more sensor

nodes placed on the user. In other words, this study aims at

answering the following questions: How does the localisation

performance increase by using multiple sensors placed on

the user? and Is it possible to estimate the direction where

the user is facing? We answer these questions by comparing

configurations with one to five sensors on the mobile. We

present our simulation results along with remarks on Wireless

Sensor Networks (WSNs), which is the illustrative case study

for this research. However, the qualitative results of our study

should equally apply to other types of networks since the

proposed approach meet the requirements of most location-

dependent applications.

This paper is organised as follows. Section II recalls the

main localisation systems, the maximum-likelihood procedure

is summarised in Section III. Its performance is illustrated in

Section IV. Conclusions are drawn in Section V.

II. RELATED WORK

Many of the indoor positioning systems proposed in the

last years extract the location-dependent parameters such as

time of arrival, time difference of arrival and angle of arrival

[9] from the received radio signal transmitted by the mobile

station. Such measurement needs to be estimated accurately

and it requires line of sight between the transmitter and the

receiver. Furthermore, it requires specialised and generally

expensive hardware integrated into the sensor communications

equipment. Because of these reasons and because of the

ever more widespread deployments of WLAN infrastructures

and the fact that RSSI readings are available in all wireless

interfaces, RSSI-based positioning system promise to be a

cheaper solution.

The fingerprinting based RSSI approach is one of the most

widely found in the literature [5], [6], [7], [8]. Fingerprints

are generated during an off-line calibration phase where RSSI

data is collected at a set of training locations. The most

challenging aspect of the fingerprinting based methods is to

formulate a distance calculation that can measure similarity

between the observed RSSI and the known RSSI fingerprints.

Various machine learning techniques can be applied to the

location estimation problem [10]. Probabilistic method [11],

k-nearest-neighbour [5], neural networks [12], and support

vector machines [7] are popular positioning techniques based

on the location fingerprinting.

Euclidean distance based calculation has been used in [13]

to measure the minimum distance between the observed RSSI

and the mean of the fingerprints collected at each training

point. RADAR [5] uses a k-nearest-neighbours method in

order to find the closest match between fingerprints and RSSI

observation. Recently, research efforts have concentrated on

developing a better distance measure that can take into account

the variability of the RSSI training vectors. These methods

estimate probability density for the training RSSI and then

compute likelihood/a posteriori estimates during the tracking

phase using the observed RSSI and the estimated densities [6].

User localisation is performed using a maximum-likelihood

(ML) or maximum a posteriori (MAP) estimate of position.

Kernel canonical correlation analysis [8] is used to construct a

more accurate mapping function between RSSI and radio map.

Although these recent developments improve position esti-

mates compared to simple k-nearest-neighbours, they often re-

quire a larger training set and greater computational resources.

Chai [14] proposes a learning-based approach to reducing the

calibration effort. A uncorrelated transformation can be found

in [15]. Recently, some approaches utilise sensor network to

assist location system for adapting the radio dynamics [16].

The unstable factors such as open/closed doors and humidity

are detected by the sensors and thus a collaborative positioning

system is provided by such context-awareness radio map [17].

Yin [18] proposes a learning approach where the radio map is

temporally updated depending on the current environment. In

Moraes’s work [19], a dynamic RSSI mapping architecture is

investigated. The dynamic noise problem is in some sense re-

duced in such mechanisms where the environmental changing

is monitored. However, the short-term dynamic multi-path is

difficult to detect and several difficulties are faced such as a

site survey on environmental factors and additional hardware

installation in these techniques.

In contrast with fingerprinting, model-based positioning

techniques express the RF signal attenuation using a physics-

based path loss model [20], [21]. Starting from the RSSI

observed by a mobile relative to at least three anchors, these

methods estimate the distance of the mobile from the anchors

and triangulate its position. However, the relationship between

distance and RSSI is highly complex due to multi-path, metal

reflection, and interference noise. Thus, the signal propagation

mechanism on which the distance computation is based may

not be adequately captured by a fixed invariant model. A num-

ber of variants on probabilistic Bayesian inference approaches

have appeared in the literature [11]. Bayesian inference is

a probabilistic framework which sequentially estimates the

unknown state from noisy observations using a dynamic pre-

dictive model and an observation likelihood. Bayesian methods

can estimate a person’s velocity and acceleration in addition

to position, and can also provide an uncertainty measure of

the estimates. Recently, Letchner et al. [22] introduced a

sensor measurement model in the particle filter framework that

combines a Wi-Fi signal propagation model and fingerprinting

technique for localisation. The method assumes radially sym-

metric attenuation of wireless signals and also requires large

training data sets for fingerprinting. Several other algorithms

assume an empirical path-loss-based radio signal propagation

map to compute the likelihood of RSSI observation [20].

The performance of these algorithms, however, may degrade

in practice due to RSSI variability over time and location.

For this reason, research efforts have been recently directed

towards developing a localisation algorithm that automatically

calibrates the propagation model parameters [21].

A survey on indoor radio location algorithms can be found
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Fig. 1. Scenario: single-room localisation with 3 mobiles placed on the user
and 4 anchors deployed in the environment.

in [23], where an experimental platform has been deployed to

compare various positioning techniques. Differently from what

is done in [23], we used numerical data obtained through ac-

curate propagation modelling instead of measurements, which

allows for a greater number of field values. In our case,

we considered a dense grid and different scenarios as far

as anchors positioning and antenna orientations are regarded,

with up to five mobile nodes on the user.

Propagation modelling represents a useful tool during the

deployment phase of indoor wireless propagation systems;

more recently, it is going to be also used to validate and

develop efficient radio location algorithms. Although deter-

ministic models are relatively time-consuming, they remain

an attractive approach for those cases where a site-specific

approach appear to be more suitable than stochastic ones, as

it happens in small indoor environments made of one or few

rooms. In this context several efforts are focused on developing

fast deterministic models, by using computer graphics tech-

niques to speed up ray-tracer algorithms or by adopting novel

approaches as those based on the multi-resolution frequency

domain parflow technique [24].

In this paper, a deterministic propagation model combining

effective ray-tracing algorithms and high-frequency expres-

sions for the reflected/diffracted fields is used. Since we are

focused on deriving accuracy bounds for existing location

algorithms, we are interested in obtaining field maps as close

as possible to those that could be measured in the reference

indoor scenario, without any concern about time required for

numerical simulations.

III. LOWER BOUND ON LOCALISATION ERROR

In the scenario depicted in figure 1 a user is located in

a room, wearing a number M of receivers (the mobiles). A

number N of transmitters (the anchors) placed in well known

positions transmit beacon packets. Each mobile r registers the

corresponding RSSI which form a fingerprint vector of RSSI

values yr, defined as

yr , [yr
1
, yr

2
, · · · , yrN ] ∀r ≤ M. (1)

TABLE I
PERFORMANCE OBTAINED WITH VARIABLE NUMBER OF TRANSMITTERS

AND A SINGLE RECEIVER.

Number of transmitters 3 5 7 12 18

Error (third quartile) [cm] 356 300 267 145 73

Fig. 2. The room environment. Only half of the grid is shown.

For each point on the map i and for each receiver r,
the RSSI database h is populated by means of a ray-tracing

simulation run with data:

hi,r , [hi,r
1
, hi,r

2
, · · · , hi,r

N ] ∀r ≤ M. (2)

Note that each fingerprint vector hi,r is composed of the

expected RSSI values at position i for receiver r. We assume

that the probability of measuring yr given the RSSI vector hi,r,

that is P(yr|hi,r), is a multivariate Gaussian random variable

N (hi,r, Σ), where Sigma accounts for the errors relative

to the spatial coordinates and to the received power level

RSSI, which are independent random variables. The estimated

position î is then evaluated using a maximum likelihood

estimation (MLE) criterion i.e.

î = argmax
i

P(yr|hi,r). (3)

In [4] we show that the localisation error for a single mobile

decreases by increasing the number of anchors (Table I) and

found a lower bound of the median error for 18 anchors equal

to 21 cm. In this paper we want to examine if performance

can be further increased by using multiple mobiles.

IV. SIMULATION RESULTS

A. Simulation environment

We consider an office room at our lab at ISTI, CNR, in

Pisa. Its size is 7 by 4.95 meters, its height is 3.12 meters. The

room has two doors, a magnetic whiteboard, a low metallic

cabinet in the top-left corner and a high one on the right

wall. The walls are made of gasbeton, the floor is wooden

and there is a lightweight dropped ceiling (Figure 2). Both

the mobiles and the anchors are modelled as a λ/2 dipoles
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Fig. 3. RSSI behaviour when a single anchor is placed in a corner and on the centre of the room.

TABLE II
POSITIONS OF THE EIGHTEEN ANCHORS. θ IS THE INCLINATION AND φ IS

THE AZIMUTH OF THE DIPOLE ANTENNA. WHERE MORE TWO ANGLES

ARE GIVEN, TWO ANCHORS WITH DIFFERENT ORIENTATION ANTENNAS

ARE USED IN THE SAME PLACE.

Position x y z θ φ

POS01 6.65 4.6 2 0/45 0

POS02 6.4 3.0 2 0/45 0

POS03 6.95 0.1 2 0 0

POS04 1.9 0.1 2 0 0

POS05 0.8 3.85 2 0 0

POS06 0.1 4.9 2 0 0

POS07 2.333 2.525 2 90 0/90

POS08 4.663 2.525 2 90 0/90

POS09 3.5 2.525 2 90 0/90

POS10 3.5 4 2 90 0/90

POS11 3.5 1.05 2 90 0/90

TABLE III
POSITIONS AND ANTENNA ORIENTATION OF THE FOUR BEST ANCHORS

OUT OF THE TOTAL EIGHTEEN.

Position x y z θ φ

POS01 6.65 4.6 2 45 0

POS03 6.95 0.1 2 0 0

POS07 2.333 2.525 2 90 0

POS09 3.5 2.525 2 90 90

(being λ the wavelength at the second channel of the IEEE

802.15.4 standard), which is about 62 mm.

Eighteen anchors are placed in different positions on the

walls and ceiling (see Table II), with different antenna orien-

tations, while the mobiles are placed on or around the user

with vertical antennas. When multiple mobiles are present,

they are equally distributed on a horizontal circle around the

user, with a radius of 25 cm. The radius was chosen so that

two mobiles could be placed on the user’s shoulders. We also

made simulations with radii of 12.5 cm (to be placed on a hat)

and of 50 cm (on the corners of a wheelchair), but we do not

report those results as they are not significantly different from

the ones at 25 cm.

B. Ray-tracing simulation

In order to simulate the behaviour of the transmitted signal

and evaluate the RSSI estimated at the receivers, we use a

three-dimensional deterministic propagation model based on

an inverse ray-tracing algorithm which accounts for contribu-

tions up to third order reflections. The model evaluates first-

order edge diffractions through heuristic UTD (Uniform Geo-

metrical Theory of Diffraction) dyadic diffraction coefficients,

valid for discontinuities on impedance surfaces, and accounts

for conductivity and permittivity of the wall materials. The

grid of the map is narrow enough (3.1 cm) that we can assume

we have most of the information about RSSI on the considered

plane. Let’s now look at reflections inside the room, and how

much they affect the RSSI pattern. Figures 3 represents the

RSSI behaviour when a single anchor is placed in the indoor

environment, specifically in the top-right corner at 2 m height

with a vertical antenna in the figure on the left and at the

centre of the roof with a horizontal antenna in the figure on

the right. One can see that the RSSI patterns are very complex,

and even displacements of a few centimetres can change the

received value significantly. At the same time, for each given

RSSI value, there are many, even far-apart locations in the

room where the same RSSI value is observed. We can draw

the following conclusions:

• Since reflections dominate the RSSI distribution, the use

of a simplified path-loss models introduce significant

errors in this type of environment.

• The accuracy of positioning during off-line measurements

for calibration should be a primary concern; in fact, errors

of few centimetres can significantly change the fingerprint

at a given location.

• Positioning errors can be caused by incorrect measure-

ments in real environments, incorrect modelling in sim-

ulated environments, small changes in the environment

itself after calibration, and so on.

• Fingerprinting methods using interpolation of grid values

assume that the RSSI distribution in the area of interest

is somewhat continuous, but by looking at figure 3, one
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Fig. 4. Cumulative distribution functions of errors for up to five mobiles when all 18 anchors are used. Errors decrease with increasing number of mobiles.
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Fig. 5. Cumulative distribution functions of errors for up to five mobiles when the best four out of all eighteen anchors are used. Errors decrease with
increasing number of mobiles.

would say that this is clearly not the case. Even when

some kind of interpolation is used, the strongly non-

linear distribution of RSSI will make this process prone

to significant localisation error.

• For any method used, errors both in RSSI measurement

at the mobile and power strength at the anchor should

be kept into account, since both random and systematic

non-negligible errors will occur.

C. Single versus multiple mobiles

For each scenario, the mobile receives RSSI information

from a number of anchors, and for each grid of the map

we compute the likelihood for the mobile to be located at

this position. Performance is computed as the positioning and

orientation errors for a given configuration. We generated

40 000 points inside the room, with uniformly random po-

sitioning and orientation. For each generated point (the actual

point, we perturbated its position and orientation to simulate

imprecise positioning measurements and perturbated the RSSI

readings at the perturbated position to simulate incorrect RSSI

measurement at the mobile. We did not introduce any sort of

error to account for the anchors incorrect transmission power.

For the resulting vectors (one per mobile) of RSSI readings

(one per anchor), the likelihood of being at each position and

orientation on the map was evaluated and the maximum was

sought. For the estimated position and orientation, the distance

from the actual position and orientation was computed.

The distributions of these distances are plotted in figure

5: the first two plots are computed when considering the

RSSI received from all 18 anchors we placed in the simulated

environment, while the second two plots only consider the best

4 anchors (Table III), that is, the anchor quartet that gives the

best results.



The primary purpose of this work is to answer the two

questions: does attainable performance increase when using

multiple mobiles placed on the user rather than a single one?

do multiple mobiles allow to estimate orientation with rea-

sonable accuracy? When considering the already good results

attainable with 18 anchors, we observe that improvements are

significant only up two mobiles, with a modest improvement

at three mobiles, and no significant further improvement with

4 and 5 mobiles. On the other hand, when starting from the

bad attainable performance we have with 4 anchors and a

single mobile, each increase in the number of mobiles brings

a significant advantage.
The resulting numbers indicate that in the 18-anchors case

a localisation method can potentially be devised that gives a

good estimate of the positioning and orientation of the user.

In the 4-anchors case, on the other hand, a (memoryless)

purely RSSI-based localisation method could potentially give

reasonable positioning estimates only using five mobiles, but

will not be able to give usable orientation estimates. These

results are valid for the specific positions that we adopted

for the anchors and for the specific environment that we

analysed: more thorough investigation is needed to obtain

widely-applicable conclusions.

V. CONCLUSIONS

We analysed the maximum performance attainable by a

localisation system based exclusively on RSSI measured by

one or multiple receivers placed on a user in an office room.

The signals are sent by a number of fixed transmitters placed

on the walls and ceilings. The system has no memory and

uses no other information than RSSI readings. We find that

using multiple mobile receivers has the potential of increasing

both the positioning and the orientation capabilities of locali-

sation systems based on RSSI measurements. However, more

than just a few transmitters may be needed to obtain usable

estimates.
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