
GaliLEO: a simulation tool
for LEO satellite constellations∗†

Laurent Franck
ENST/T́eSA

Toulouse (FR)
Laurent.Franck@enst.fr

Francesco Potortı̀
CNUCE-CNR

Pisa (IT)
F.Potorti@cnuce.cnr.it

Abstract

We present GaliLEO, a simulator for the transmis-
sion of connection-oriented traffic over a constellation of
LEO/MEO (Low / Medium Earth Orbit) satellites. Its scope
is limited to the satellites and the stations accessing them,
without any modelling of the terrestrial network, but inside
this scope the goal is to study the performance of satellite-
based communication networks from as many as possible
points of view at the network level. Typical applications
include simulation of access techniques, routing policies,
fault management. The simulator is written in Java, and
it makes use of dynamic loading to easily integrate user-
written modules. A draft manual is available, and a prelim-
inary version of the program has been published at the end
of 2000.

1 Introduction: the newborn and the world
around it

The motivation behind GaliLEO’s conception emerged
during an exchange of ideas among some members of the
European COST 253 Action1, a forum where researchers
from all around Europe periodically meet to address is-
sues related to LEO constellations of communication satel-
lites. The point was made that none of the commercially or
freely available simulation tools was reasonably usable asa
generic simulation tool for LEOs.

∗The final, definitive version of this paper has been publishedin SIM-
ULATION, Volume 78, Issue 9 of September, 2002 by Sage Publica-
tions Ltd, All rights reserved. c©The Society for Modeling and Simu-
lation International (Simulation Councils Inc), 2002. It isavailable at:
http://online.sagepub.com/

†This work was partially supported by the CNR (Italian National Re-
search Council) under the 5% Multimedia Programme.

1COST stands forCooperation in the field of Scientific and Technical
research, see<URL:http://www.eeng.brad.ac.uk/Research/cost253/> for
information on COST 253, which ended in June 2000.

This seminal discussion later led to the initial design
of the GaliLEO architecture, which was the outcome of
a collaboration between two institutes where researchers
had already had experiences in developing special pur-
pose simulators. The objective of GaliLEO is twofold.
First, it has to provide a simulation framework strongly fo-
cused on satellite constellations in order to relieve the user
from all the burden of tedious programming about satel-
lite/constellations characteristics (orbital mechanics, han-
dover management, access methods). Second, the frame-
work has to be open in order to allow modifying the im-
plemented mechanisms as effortlessly as possible. These
two objectives call for an object oriented approach where
the simulator is made from building blocks. Some of
these blocks may be replaced (although their location in
the framework is fixed) at the user’s convenience, achieving
customisation of the simulation model. Other blocks may
not be changed, taking part in immutable behaviour of the
simulator. Achieving adaptivity while keeping a tight focus
on satellite constellations was the main challenge during the
design of GaliLEO.

1.1 Other network simulators

The literature is rich in simulation papers. Many of them
do not mention the tools used to obtain the results. Most
of the simulators that are explicitly mentioned belong to the
discrete-event family, i.e. they model a certain system as
it evolves over time using a representation where the state
variables only change at a countable number of points in
time. Events occur at these points: they are defined as in-
stantaneous occurrence which may change the state of the
system.

In the following, we very briefly describe four simulators
that are often cited in the literature, and we mention their
perceived drawbacks with regard to large-scale, network-
level simulations of satellite constellations. Two problems
common to all the cited simulators, apart fromns, are that
they are generally expensive for small research groups and

1



for students, and that their development model is not open.

OPNET(OPtimised Network Engineering Tool) is a sim-
ulation tool, based on state machines, for analysing commu-
nication networks by using models[9]. Opnet models are
specified in terms of objects, each with a configurable set
of attributes that can be specified either by a graphical pro-
cess, an associated text file, or as variable parameters in the
simulation description file. The specification of the models
is organised into a hierarchy of four different levels, called
network, node, process, and parameter. Once the model is
specified, Opnet generates a simulation program written in
the C language. Opnet is a very general simulator that can
be used to simulate satellite constellations. Its general pur-
pose character is however a weakness when studying com-
plex configurations, because Opnet needs to identify any-
thing as an event, which makes ad-hoc optimisations impos-
sible or very difficult. In [4], a test case is made showing an
impressive speed difference in excess of 100:1 between the
specialised simulator Fracas and Opnet. Generally speak-
ing, we expect a big performance difference between any
specialised simulation tool and general purpose ones like
Opnet and Bones.

BONeS(BlockOriented Network Simulator) is a sim-
ulation system for studying communication network
models[14]. BONeS SatLabis a software package for
the design, animated visualisation and analysis of satellite-
based communication systems. It provides multiple ani-
mated views of global satellite systems, uplink, crosslink
and downlink analysis, jamming, and adjacent satellite in-
terference analysis representation of earth stations. Three
types of simulation can be performed: positioning, design
and communication simulation. The positioning simulation
lets the user model analyse and animate various configura-
tions of satellites, fixed earth stations and moving stations.
The design simulation automatically performs simulation
for a range of parameter values. For example, the user can
determine the interference of communication satellite sys-
tems on other communication systems or the probability of
interference between satellite systems for selected frequen-
cies. The communication simulation is used to track the
source and route of data packets and to determine their best
route based on relative distance, velocity, angle, visibility,
traffic congestion, and interference between two or more
nodes. While very flexible, Bones is focused on the radio
and telecommunications aspects, or else packet-level simu-
lation; therefore it is not particularly efficient for simulating
networking aspects by running long simulations with a great
number of connections.

ns-2 (Network Simulator) is a free TCP simulator
at the packet level. It is not usable for our pur-
poses, because it provides no support for dynamic net-
work topologies or MAC level simulation, apart from a
CSMA/CD module targeted at LANs. It is available at

<URL:http://www.isi.edu/nsnam/ns/>.
RESQ(RESearch Queuing package) is a software pack-

age developed at IBM Research for defining and solving
extended queueing network models[12, 13]. Resq provides
a numerical solution component,QNET4, which uses the
convolutional algorithm for product form networks, and a
simulation component, namedAPLOMB. Resq is especially
strong in the statistical analysis of the simulation outputand
the computation of appropriate simulation run lengths. Its
main limit is that it is specially focused on systems that can
be naturally be modelled with a queueing system.

1.2 GaliLEO’s ancestors

The basic idea and most of the concepts regarding the
connection setup and the channel access from a ground sta-
tion were developed at CNUCE, an institute of CNR in
Pisa (IT), as a consequence of the inadequacy of the lo-
cally developed Fracas [4] simulator for the study of LEO
networks. The routing concepts and the details of the ar-
chitecture that form the glue of the actual implementation
of GaliLEO come from the experience of the LeoSim [7]
simulator, developed originally at the Brussels University
(BE), and currently at ENST in Toulouse (FR), and the ini-
tial specifications of SimToc [6], designed at CNUCE. Inter-
estingly, while having very different scopes and objectives,
all of these simulators took an object oriented approach to
implementation, principally as a means to ease extensibility.
GaliLEO aims to be a general purpose, customisable tool,
freely available for the whole satellite community.

Fracas (FRAmed Channel Access Simulator) is essen-
tially a command line driven emulator whose time advances
in fixed length steps, usually of the same length of a frame
of the protocol under study. While very fast and very well
suited to the study of access protocols for GEO systems, it
cannot be adapted to LEO systems. Its heritage consists of
the concepts behind statistics collection and manipulation.

LeoSim, the most important of GaliLEO’s ancestors,
is an event-driven, continuous time simulator accessed
through a graphical interface. It has been developed at
ENST (FR) in order to study link state routing algorithms
for LEO satellite constellations. LeoSim provides statis-
tics on the number of call requests, the call block proba-
bility, and the cost introduced by maintaining the link state
database; shortest path routing, handover management and
elaborate routing signalling are implemented. Its design ap-
proach and its core simulation engine have been transported
into GaliLEO. The object model has been streamlined and
enhanced in order to add support for access methods, beam
management and enhanced call signalling. Several hooks
have also been placed in the network model in order to ease
the future evolution towards connectionless traffic. Its most
prominent limitation is that access to the satellite is not sim-



ulated at all. This makes it impossible to simulate methods
for accessing the satellite channel from the earth stations.

From SimToc, the other ancestor from CNUCE,
GaliLEO took the global architecture, the idea of the up-
down link between the ground station and a satellite of the
constellation, and the way a connection is set up and modi-
fied. SimToc has never gone past the design stage.

Consim[1] is a simulator developed at CSELT (IT) for
evaluating the performances of constellations of communi-
cation satellites affected by different types of failures.Con-
sim will be integrated by results into GaliLEO. By “integra-
tion by results” we mean that the two simulators are kept
separate, and the results of Consim are used by GaliLEO.
This is a simple way to program interaction between two
simulators that were written separately, while minimising
the coupling needed between the different teams responsi-
ble for the programs. However, this approach is only fea-
sible when the two studies cover aspects which are not in-
terdependent. In this case, Consim runs a failure model to
produce a list of failure events occurring during the constel-
lation lifetime, each one tagged with the type of failure and
the time of occurrence. Since the fault occurrence is inde-
pendent of the traffic generation, Consim needs no feedback
from GaliLEO, and the data exchange between the simula-
tors can be unidirectional. In practice, the list of failure
events is provided during the simulation initialisation phase
and then used to feed GaliLEO’s simulator engine in order
to trigger the right fault managers at the appropriate time.

2 Architecture

Figure 1 highlights the three-layer architecture of
GaliLEO.

The first layer (Simulation engine) defines both the struc-
ture of components, which are the blocks from which
GaliLEO is built, and the way they behave and interact.
The components’ dynamics is the job of the scheduler
that runs the components and defines a message passing
structure for inter-component communication. Thus the
first layer constitutes a generic infrastructure for a discrete-
event, message-passing simulator.

The second layer (Core modules) implements thenet-
work modelof GaliLEO, by defining the scope of GaliLEO
possibilities through the definition of a set of classes. These
classes (calledtemplates2) also specify the rules for using
the network model and creating custom components. This
layer is not customisable per se, and in fact is the core of
GaliLEO’s functionalities. Experimenters needing to im-
plement their own set of modules should be well acquainted
with the network model.

The third layer (Custom modules) is the set of modules
which are dynamically loaded from a library, including both

2They are unrelated to C++ templates.

Configuration
files

Graphical
interactive

constellation
builder

Graphical
interactive

data
analysis

scheduler

Core modules

Custom modules

Simulation
engineSource

segment

Ground
segment

Space
segment

Measurement
modules

configuration
validator

input user
interface

initialiser

Results
files

CONSIM

output user
interface

agenda

Figure 1. GaliLEO architecture.

standardandcustom components. Standard components are
components shipped with GaliLEO. Custom components
are developed (possibly based on standard components) by
the user of GaliLEO in order to tailor the simulator to its
needs. This layer is where ad-hoc built modules are inte-
grated in GaliLEO. Examples include modules defining the
behaviour of actual routing algorithms, channel allocation
methods, traffic generators, call admission control policies,
and so forth.

To summarise the relationship between the second and
third layer, layer two defines what are the general character-
istics of, say, a channel allocation method (in terms of what
are the provided services) while layer three defines actual
channel allocation methods.

2.1 Components as building blocks

GaliLEO is extremely modular, because it aims at pro-
viding a simulation framework where one plugs in a locally
developed, e.g., routing algorithm, and evaluates the result-
ing behaviour. The basic module is called acomponent,
which is a class of Java [3] objects that provide methods
to duplicate, initialise and start themselves after creation.
Initialisation may be based on the presence of other com-
ponents in the system.Starting a component is done af-
ter initialisation. This usually makes sense only forentities
(modules with a special processing capability), which are
described below. GaliLEO comes with a small collection of
standard components, which are meant to be used as-is or
replaced with custom ones. Hopefully, GaliLEO’s library



of standard components will grow with time.
Standard and custom components are built upon tem-

plates, which are Java abstract classes used to provide an
API for the development of components. Providing an API
has some shortcomings with respect to providing an exten-
sion language; it is generally more difficult to program in
Java than in a dedicated extension language, which can be
limited to provide only special constructs and can be well
insulated from the details of the simulator core. However,
using an API is a far easier and more flexible approach, and
certainly more efficient in terms of resource usage.

Components contain both code and data. After initial-
isation, a component can either live as a passive element
whose methods are called by the system and other compo-
nents, or behave as an independent piece of code. This latter
special kind of component is called anentity. Entities run
concurrently with the rest of the system and other entities,
by using the communication and scheduling facilities pro-
vided by the simulation engine.

The GaliLEO network model described later is therefore
a collection of inter-operating components.

3 The simulation engine

The simulation engine comes from LeoSim, and includes
the scheduler and the agenda.

Componentcreates an event for
selector S of instance
2 of entity A at time t

Scheduler

when the event is the first of
the queue, set global time to t,
dequeue the event, requeue it
if it has a repetition count > 0

check that entity A
supports selector S,
and dispatch selector
S of instance 2

Agenda

Selector S

Selector T

Entity A
instance 1

Selector S

Selector T

Entity A
instance 2

Figure 2. Creating, scheduling, and consum-
ing events.

Any module inside GaliLEO can generate an event by
calling thescheduleAction method of thescheduler,
which creates a pending event. The arguments of this
method are the delay after which the event should be trig-
gered, a repeat count, and the action triggered by the event.
The scheduler organises the pending events in a structure
called anagenda, which is conceptually a queue where
the events are kept sorted according to the time when
they should be triggered. The exact implementation of the

agenda is customisable, to allow experimentation, easy up-
grading, and platform-specific optimisations. Currently,a
simple-minded delta list is implemented, together with a
more sophisticated calendar queue implementation.

A delta list is a structure allowing basically two opera-
tions, namely insertion of a random element and extraction
of the smallest element. The implementation consists of a
linked list where an event is inserted in order, so the extrac-
tion consists simply of extracting the first element of the list.
Inserting an element needs scanning the list from the begin-
ning, so the insertion time isO(N), N being the number of
pending events, which is a measure of an event driven sim-
ulation’s size. In order to perform big simulations like those
we are planning, all computation related parameters, promi-
nently memory consumption and execution speed, should
scale not much faster than the simulation’s size. Unfortu-
nately, if the insertion of each event in the ordered list takes
a time proportional to the total number of events, the to-
tal overhead introduced by event scheduling in a simulation
will be O(N2).

A calendar queueis a structure allowing the same opera-
tions as those provided by a delta list, but using a more com-
plex data structure, consisting of an array of linked lists.It is
possible to make an analogy with a calendar, where for each
day one writes down zero or more appointments, ordered by
the time of the day. Finding the day where the appointment
should be written isO(1), and inserting it in the queue of
that day isO(n), n being the number of events (appoint-
ments for that particular day). Two parameters must be set
for a calendar queue, that is the slot size, which is the length
of the day in the calendar analogy, and the number of slots.
It has been shown in [5] that the optimal number of slots is
O(N). By changing dynamically the number and the size
of the slots depending onN we obtain adynamiccalen-
dar queue, for which empirical evidence has been given in
[2] that insertion and extraction times areO(1). Currently,
GaliLEO implements astaticcalendar queue, whose param-
eters are read from the configuration.

The action triggered by an event is defined by aselector
and a list of arguments to it. A selector is an entry point
in a module, that is, a method which possibly accepts ar-
guments. When an event is triggered, the associated selec-
tor is called, and the relative list of arguments is passed to
it. This simple message passing mechanism allows asyn-
chronous communication between components. More pre-
cisely, any piece of code inside GaliLEO can generate an
event, and thus send a message, but only entities can have
selectors, and thus be awakened by the scheduler and re-
ceive a message.

The scheduler is the heart of the simulator. After the ini-
tialisation phase, the simulation consists of a loop running
inside the scheduler, which just removes the first event from
the queue, advances the system’s time to that of the event,



and calls the selector specified therein, with the appropriate
argument list. When the selector is finished, it returns to the
scheduler. The loop ends when there are no more events in
the queue, a special stopping event is encountered, or when
manually stopped by the operator.

Since it is anticipated that GaliLEO will go distributed
in the future, the scheduler is customisable, to allow exper-
imentation and local customisations of distributed schedul-
ing criteria. Currently, a simple serial scheduler is available,
which is the normally used one.

Moreover, if the first selector creates any events whose
time is less than the time of the second event, these
events (recursively) should not trigger any change of state
on which the second selector relies. In order to ease
this requirement, a second argument is passed to the
isSafeWith method, which is the time of the second
event.

This mechanism is far from being automatic, but in prac-
tice it can allow some parallelism for carefully crafted com-
ponents that have been written by the same programmer.
For example, computing a route is a time consuming task
(it involves usually a shortest path algorithm). If two suc-
cessive routing events are present in the agenda, they could
be launched concurrently provided that they do not have to
be performed in the same satellite.

4 The network model

The second layer of the architecture depicted in Figure
1 defines the basic capabilities of the simulator as far as
the modelling of the communication network is concerned.
The relevant modules are the Source, Ground and Space
segments. Each is a collection of components and tem-
plates. Custom and standard components are instantiation
of templates, and occupy the third layer of the architecture.
GaliLEO will initially ship with a small set of standard com-
ponents, and a manual describing the API for building cus-
tom ones.

4.1 Assumptions and definitions

Many components in GaliLEO are meant to describe real
objects in the satellite network. We describe the main con-
cepts used when describing the network, and when there is a
direct correspondence between a concept and a component,
we will indicate the name of the component in mono-spaced
face between brackets, like in [Satellite].

We define acell as the area of the earth illuminated by a
satellite spot beam. Afootprint is the whole coverage area
of a satellite [Satellite], i.e. it is the sum of the areas
covered by its spot beams. Anoverlap areais the area in
which aground station[Station] (i.e. a single subscriber
or a concentrator) can receive a signal with an acceptable

ISL
satellite

UDL

cell

footprint
station

beam overlap area

traffic generators

Figure 3. Names of some objects used in the
simulator.

power level from more than one adjacent spot beams. A
UDL (Up-Down link) [Udl] is the aggregation of all spot
beams pertaining to the same footprint; it has a fixed capac-
ity, and is unidirectional. Abeam[Beam] is the communi-
cation medium between a satellite and a spot on the ground.
A beam has a variable capacity which cannot exceed the ca-
pacity of the UDL the beam belongs to. Anode[Node] of
the network is any station or any satellite. Satellites have
multi-beam antennas for up-link reception and down-link
transmission, and are connected to each neighbouring satel-
lite by means of anISL (inter-satellite link) [Isl] which is
a unidirectional link.

A connection[Connection] is a virtual communica-
tion path between asourceand adestination, which are nor-
mally different stations. A connection can be created, modi-
fied by changing its characteristics [Resources], and torn
down. It is assumed to be full-duplex, composed by a for-
ward and a return channel [UniConnection], where the
forward channel is intended to be from source to destina-
tion, and the return channel from destination to source.

The procedure supporting the transition from one con-
nection state to another is implemented by a call signalling
protocol [CallSignaling].

4.2 Call signalling

A call generator[CallGenerator] defines when a
connection starts, between which endpoints, and how and
when it is modified and torn down. It can be associated with
a packet generator, which produces the packet traffic run-
ning over a connection, for simulating connection-oriented



traffic. It is envisaged that, in a future, GaliLEO may be able
to support also traffic generators that create connectionless
traffic. In the following we will only consider connections
and connection-oriented traffic.

When a connection is created, the station selects
the first and last hop satellites from the constellation
[StationUdlRouting]. The station then performs
call admission control [StationQoSManager]
to determine whether there are enough resources
[StationResources] to support the connection.
Then the connection request is passed to the first
satellite which computes the route [IslRouting]
between the first and last satellites. If there is
such a route, all satellites on the path perform call
admission control [SatelliteQoSManager],
[SatelliteResources]. The same procedure
takes place in the destination station. If it turns out
that the connection can be routed through that path, re-
sources are actually allocated ([StationQoSManager],
[SatelliteQoSManager]).

In order to simulate connections coming from a call con-
centrator (aggregated phone calls), the number of channels
of the connection is not fixed after a connection has been
set up, but can change during the lifetime of the connection.
For example, a concentrator may set up a single connection
for all the phone calls it handles, and may simulate both new
phone calls and old closed phone calls by varying the num-
ber of channels used by the single connection as set up at
start time. In other words, a number ofn phone calls from
stationi to stationj is simulated by the generation, in sta-
tion i, of a unique connection that requestsn channels. The
modification of a connection requirements is performed in
a similar way to the connection setup procedure.

A handover(or hand-off) occurs when either a UDL con-
necting a satellite to a ground station is cut off, or when a
beam change occurs (inside the same UDL), or when an ISL
is cut off. All connections passing through the affected link
must be appropriately processed (rerouted or torn down)
[ConnectionChangeMonitor].

A connection dropoccurs when an existing connection
is forcibly torn down. It may happen either when there is
a handover and the connection cannot be rerouted, or when
higher priority traffic preempts all the resources used by a
connection. Apartial drop may also occur, when part of
the resources of the connection is taken back by the net-
work. A call block occurs when a new connection cannot
be established. It may happen when there are no resources
available in the network in order to support the new connec-
tion. At the current time, the limitations of the call connec-
tions are: only point-to-point connections are considered;
a connection cannot be split on more than one path (how-
ever, forward and return channels are not necessarily on the
same path); no rerouting of connections happens as a con-

sequence of growing or shrinking a connection (aggregate
connections case); and no partial rerouting of connections
is possible inside the constellation. Some or all of these
limitations may be lifted at a future time.

4.3 Routing

Routing policies are one of the main aspects that will
be studied using GaliLEO. End-to-end routing is split
into UDL and ISL routing; additionally, UDL routing is
split into Up-Link (UL) routing, that is, the process by
which the source ground station selects the source satel-
lite used to forward the packets of the connection, and
Down-Link (DL) routing, that is, the process by which
the destination ground station selects the destination satel-
lite from which the packets of the connection will arrive.
On the other hand, given a source satellite and a desti-
nation satellite, as provided by UDL routing, ISL routing
computes the (or at least one) optimal path between these
two satellites. ISL routing includes a signalling scheme
[SatelliteLinkStateManager] to distribute and
gather routing information [RoutingInformation]
to/from the other satellites.

4.4 Fault management

The general reliability of a satellite must cope with
the reliability of each element as well as the relationships
among different failures. Trying to compute the reliabil-
ity function of a system is thus quite complex and many
simulations have to be used in order to have an estimate of
the reliability function. GaliLEO will take advantage of the
capabilities of Consim, which will generate failure events
having proper nature and time distribution.

5 Some implementation aspects

This section will cover some implementation issues re-
lated to simulation performance. As it is often the case with
broadband network simulations, the time needed to simulate
a short period of time may be in the order of days; hence,
the concern about performance enhancement. We will go
briefly through considerations about simulating the network
packet flows, distributing the simulation, programming op-
timisations and the selection of an appropriate development
tool.

Simulating the actual packet flow in a network simulator
provides valuable insight on the network behaviour. With-
out doing so, a satisfactory level of accuracy, especially
when it comes to time relations of the various phenom-
ena occurring in the network, cannot be achieved. Unfortu-
nately, it also results in a heavy process (if not intractable)



for a simulator of LEO constellations because of the po-
tential huge number of traffic sources, and because of the
bandwidth ranges involved (up to hundreds of Mbit/s). As
a result, simulating each packet individually is often only
wishful thinking for realistic simulation scenarios. Two so-
lutions are available to overcome this problem. The first so-
lution consists in using mathematical tools (when it is pos-
sible) to model the average behaviour of the packets and
deduce useful measures. For example, if the traffic is made
of a number of constant bit rate sources, one can - given cer-
tain assumptions - model the cell arrival pattern in a switch
using aND/D/1 queue [11].

The second solution is to implement distributed or paral-
lel simulation in order to increase the available processing
power [8]. GaliLEO plans to support both solutions. The
simulation engine of GaliLEO was designed in order to ease
the transition to a distributed paradigm without compromis-
ing the existing architecture.

Implementing distributed simulation raises two issues.
The first one is how to partition the processing space into
parallel processing entities. The second one is implemen-
tation related and concerns the communication means that
are used among processing entities. As far as GaliLEO is
concerned, one possible partition is to distribute evenly the
satellites and stations on the pool of available computers.In
order to choose a suitable partition, each possible solution
must be evaluated taking into account the amount of data
that has to be exchanged between the various distributed
entities, the balance of the computation load on the differ-
ent entities, the time dependencies between the entities and
the available resources.

Once a distribution scheme has been established, the
communication means must be chosen. Commonly such a
mechanism providesremote function calllike services. Java
supports a distribution paradigm through remote method in-
vocation. In a medium term range, the simulation engine
of GaliLEO and LeoSim have been scheduled to make use
of the RMI or other facilities (such as MPI) provided by
Java. A survey of the different solutions available as well
as of their performance has still to be performed. Currently,
the simulation engine optionally supports parallel event pro-
cessing on multiprocessor computers.

In a sequential or distributed simulation environment,
performance improvements can be achieved at the imple-
mentation or system level. Enhancements are either related
to the algorithms and data structures or to the development
tools. All algorithms and data structures which are likely to
be used often during the simulation must be carefully cho-
sen. The agenda in the simulation engine is an example.
Since thousands, if not millions, of events will be gener-
ated, queued and processed during a simulation run, these
operations have to be efficient.

Additional concerns are raised by the Java memory man-

agement system, which uses a garbage collector. Although
garbage collection makes it convenient to write code less
vulnerable to memory related bugs, this feature calls the de-
veloper for careful attention to the object lifetime. Among
other things, favouring object reuse is crucial to minimising
the number of allocations as well as the number of objects
eligible for garbage collection. This problem has surpris-
ing ramifications: past experience has shown that LeoSim’s
execution speed was almost doubled by increasing the heap
size, therefore reducing the number of times the garbage
collector is invoked.

Java was initially born as a language for developing In-
ternet applications and delivering them on different hard-
ware architectures without re-compilation. Compiling a
Java program produces an intermediate language called
byte-code. When the Java program is executed, the Java
Virtual Machine (JVM) interprets the byte-code. The JVM
takes care of the mapping between the byte-code and the na-
tive host architecture. Nevertheless, Java can also be used
to develop applications that do not require seamless cross
platform execution. The byte-code interpretation phase is
a drawback from a performance standpoint. The first solu-
tion is to translate directly a Java source in native machine
code. The GNU Java compiler (gcj), while still in the de-
velopment phase, provides such a facility. An intermediate
solution is to use a JVM with a Just-in-Time (JIT) compiler
that translates byte-code to native code upon class loading.
Some measurements made with LeoSim showed that the in-
crease in execution speed approaches 90%. These measure-
ments were made using IBM’s JDK under Linux. Other
tests are carried out with Sun’s HotSpot, and Symantec’s
JVM. The choice of Java may be arguable, especially from
a performance standpoint. However, the technology related
to Java compilation is rapidly evolving and Java compilers
producing machine code rather than intermediate byte code
are becoming more and more popular. Java lends itself nat-
urally to build multi-threaded applications for running on
multiple local or remote processors, it is very easily portable
among systems with varying graphics user interfaces, and a
Java program can be easily adapted to present its graphics
interface on a web browser. Finally, Java is a safe language
which permits fast prototyping and strong checking during
compilation and execution.

6 GaliLEO project management

GaliLEO is a medium-sized project with several re-
motely located teams participating. An effective mean to
exchange information is mandatory. Furthermore, as for all
developments, a structured approach is required. GaliLEO’s
project life cycle is following a spiral approach based on a
core simulator incrementally enhanced. The analysis and
design rely heavily on diagrams as a universal communica-



tion medium. The diagrams follow the UML standard and
internal guidelines.

The first stage of the project consisted in writing in plain
text what were the objectives of GaliLEO and ordering
them by priority. Then the interactions between the user
and GaliLEO were roughly described (using interaction di-
agrams from UML [10]). Using these diagrams as a start-
ing point as well as our previous experiences, the system
was described in terms of collaborating objects (i.e. objects
exchanging messages). Then, these objects were grouped
in classes. The class descriptions consisted in Java stubs
documented using thejavadocutility from the JDK. At this
point, GaliLEO was successfully compiling, although no
processing was being done. This approach made it possible
to gradually fill the gaps (i.e. replacing stubs with method
bodies) while being able to test almost immediately the re-
sulting code.

All deliverables are available in HTML from a Web
server. Similarly, the source code is stored in a Web CVS
repository. The CVS repository takes care of the versioning
and is a useful tool to determine the changes made by dif-
ferent parties across successive versions. Currently, thepri-
mary development and analysis platform is Linux. All ap-
plications that were used during the design (tgif) and the de-
velopment (JDK, CVS, cvsweb) are available free of charge.

7 Project status

Work on the design of GaliLEO begun in September
1998. Until June 2000, six Short Term Scientific Mis-
sions were organised and funded under the COST 253 ac-
tion budget. Two additional missions were funded by the
CNUCE-CNR. GaliLEO progresses mostly during these
missions since the people involved (approximatively 2.5
persons from CNUCE-CNR (IT), ENST (FR) and Public
University of Navarra (ES)) have their regular activities to
carry on.

Currently, an initial version of GaliLEO is available with
simple but operational components. Among them, a short-
est path ISL routing algorithm, a resources management
scheme using firm allocation, a call generator using Pois-
son arrivals and a handover resolution policy implementing
complete rerouting.

As a simple demo, let us consider comparing static rout-
ing versus. adaptive routing for ISL networks.Static rout-
ing consists of computing a route (i.e. a path between two
satellites in the constellation) once for all, without taking
into account the evolution of the network state (e.g. the
formation of congestion points).Adaptive routing, on the
other hand, integrates network state knowledge in the rout-
ing decision process information. However, an additional
mechanism (the routing signalling) is required to distribute
such network state information among the satellites of the

constellation.

0

0.02

0.04

0.06

0.08

0.1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

uniform traffic, static routing

nonuniform traffic, static routing

nonuniform traffic, adaptive routing

time [s]

call
blocking

probability

Figure 4. Connection blocking probabilities
for three different scenarios.

The demo is composed of three steps which share some
common parameters:

• There are twelve stations evenly distributed on the
earth surface between latitudes 45◦ and -45◦.

• Each station issues connection requests according to a
deterministic scheme (i.e. the inter-arrival delay and
the connection duration is fixed). For a given station,
the destination station of the connection request is se-
lected randomly among the other stations. Note: the
generator seed is hardcoded in the input data, there-
fore for all simulations the sequence of selected desti-
nations will be the same.

• Resources in the satellites, ISLs and stations are ex-
pressed as a number of acceptable connections. Each
connection requires therefore one unit of resources.
The constellation is based on Leonet, a 15 satellite
LEO constellation with 3 orbits. ISLs accept 20 con-
nections. Up/Down Links accept up to 80 connections.
Satellites switch at wire speed.

• The performance measure is the connection blocking
probability, that is, the ratio of the number of connec-
tions that could not be established to the total number
of connection requests.

• The route taken by a connection is computed upon re-
quest, in the first satellite of the connection. The first
and last satellites are chosen by the station initiating
the connection request as those having maximum ele-
vation.

The demo is made of three steps. In the first step, all sta-
tions issue the same traffic intensity (6 Erlangs). The rout-
ing algorithm is static. In the second one, a cluster of four



adjacent stations issue 10 Erlangs of traffic each, while the
remaining stations issue 4 Erlangs each. The global traffic
intensity is the same as in the previous case, but the traffic
is not evenly distributed, so some satellites are congested,
and the blocking probability increases.

In the third step, the traffic distribution is the same as in
the second one, but the routing algorithm is adaptive. Ev-
ery 15 seconds, each satellite broadcasts its available capac-
ity to all the other satellites. When computing a route, the
congested nodes and links are discarded. As a result, the
connection blocking probability decreases again, because
the routing algorithm is able to work around the congested
nodes and links. On a Pentium I 200 MHz, each simulation
requires approximatively 2 minutes.

8 Conclusions

Considering the questions still open in the field of LEO
constellations, there is an urgent need for a simulation
tool that would provide means to study these questions.
GaliLEO is meant to be this tool and will, as a first step,
be aimed at the study of constellation access techniques,
routing algorithms, and fault management. GaliLEO is an
ambitious project with many challenges which will provide
in the end a valuable tool for the organisations involved in
LEO research.

References

[1] M. Annoni, S. Bizzarri, and F. Faggi. Performance eval-
uation of satellite constellations. the CONSIM(TM) sim-
ulator concept and architecture. In Springer-Verlag, edi-
tor, Third European Workshop on mobile/personal Satcoms
(EMPS’98), Venezia (IT), Sept. 1998.

[2] R. Brown. Calendar queues: A fast O(1) priority queue im-
plementation for the simulation event set problem.Commu-
nications ACM, 31:1220–1227, 1988.

[3] M. Campione, K. Walrath, and A. Huml.The Java Tutorial
- Third Edition. Addison Wesley, 2001.

[4] N. Celandroni, E. Ferro, and F. Potortı̀. A simulation tool
to validate and compare satellite TDMA access schemes.
Telecommunications Systems, 12(1):21–37, 1999.

[5] K. B. Erickson, R. E. Ladner, and A. LaMarca. Optimizing
static calendar queues. In35th IEEE Annual Symposium on
Foundations of Computer Science, pages 732–743, Santa Fe
(US-NM), Nov. 1994.

[6] E. Ferro. Proposal for a simulator architecture. Cost253
Temporary Document 10, CNUCE-CNR (IT), 1998.

[7] L. Franck. Routing for Inter-satellite Link Net-
works. PhD thesis, Ecole Nationale Supérieure des
Télécommunications, 2001.

[8] R. M. Fujimoto. Parallel and Distributed Simulation Sys-
tems. Wiley, 2000.

[9] MIL3. Opnet tutorial manuals.
[10] A. Muller. Instant UML. Wrox, 1997.

[11] J. Pitt and J. Schormans.Introduction to ATM design and
Performance. Wiley, 1996.

[12] C. H. Sauer, mac Nair, et al. Queuing network software
for systems modelling.Software – Practice and Experience,
9(5), 1978.

[13] C. H. Sauer, E. A. mac Nair, and J. F. Kurose. The research
queuing package: past, present and future. InProceeding of
the National Computer Conference AFEPS, Arlington, Vir-
ginia (US), 1982.

[14] K. S. Shanmugan.Bones designer: introductory overview.
Comdisco systems.


