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Abstract

We propose a model that describes the signal fading process due to scintill ation in the

presence of rain. We analyzed a data set of up-link (30 GHz) and down-link (20 GHz)

attenuation values averaged over 1 second intervals. The data are samples relative to 10

significant events, for a total of 180,000 s, recorded at the Spino d’Adda (North of Italy)

station using the Olympus satellit e.

Our analysis is based on the fact that the plot of attenuation versus time recalls the

behaviour of a self-similar process. We then make various considerations and propose a

fractional Brownian motion model for the scintill ation process. We describe the model in

detail , with pictures showing the apparent self-similarity of the measured data. We then show

that the Hurst parameter of the process is a simple function of the rain fade.

We describe a method for producing random data that interpolate the measured samples,

while preserving some of their interesting statistical properties. This method can be used for

simulating fade countermeasure systems.

As a possible application of the model, we show how to optimise fade measurement times

for fade countermeasure systems.
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1. Introduction

Using the Ka band entails dealing with signal attenuation due to rain and scintill ation,

since the amplitude of both these phenomena increases with frequency [11, 12]. Fade

countermeasure systems, such as transmission power [9], bit and coding rates adaptation [1,

2], frequency [12, 13] or space diversity [10] are thus required to avoid loss of economy.

All these systems need a quick and accurate measurement of link degradation, due to

atmospheric events, in order to reduce the power margins over the countermeasure’s

thresholds of intervention.

The estimation accuracy of both the attenuation and the signal to noise ratio is generally

inversely proportional to the measurement time. Furthermore, due to the satellit e transmission

delay and the algorithm used, there is an interval of time, in the order of one or two seconds,

between the countermeasure application and the actual reception of data by the destination

user. By observing a selected sample of experimental attenuation data we revealed that linear

regression methods were not useful for short term predictions of attenuation, an opinion

which is also shared in [5]. The short time attenuation fluctuations (expressed in dB), in fact,

seem to have a Gaussian distribution and a small autocorrelation. This phenomenon is mostly

attributed to scintill ation, i.e. signal amplitude variations due to tropospheric turbulence [20],

rather than to raindrop absorption and scattering. Scintill ation occurs both during periods

without attenuation (dry scintillation) and also during rain (wet scintillation) [28]. Instead of

trying to predict the attenuation value, our approach is to estimate the variance of its

evolution. Then, in order to compensate for attenuation evolution and measurement

inaccuracy, we can introduce a suitable power margin. This paper presents a fractal model of

the attenuation behaviour that is applicable for time intervals of a few seconds. As examples

of possible applications, we show how to generate synthetic attenuation data for simulating

fade countermeasure systems, and we describe a procedure for optimising both the

attenuation measurement time and the power margin needed.

In Section 2 we mention how we first thought about using a fractal model for our set of

attenuation measurements. We continue in Section 3 with an overview of fractional Brownian

motion, then in Section 4 we describe our model. In Section 5 we suggest some possible links

between the parameters we found by geometrical means and experimental findings on

scintill ation processes which are found in the literature. Sections 6 and 7 give an outline of

possible applications.
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2. Interpolation of a set of measured attenuation values

Our experimental traces of the signal power attenuation are available as averages over one-

second time intervals, a time resolution which is about four times the round trip time of a

geostationary satellite and is typical of this kind of measurement. As we noted above, fade

countermeasure systems require a quick and accurate measurement of the attenuation value,

and this estimate must be disseminated as soon as possible so that the satellite network can

apply the adaptive countermeasure.

One approach to simulating rain fade events could be to take a rain attenuation trace and

interpolate it, in order to synthetically compute attenuation samples at a higher rate than the

measurement rate.

The traces highlight that any kind of elementary interpolation method would lead to the

process behaving unrealistically. Linear or spline interpolation, for example, would create at

small scales (i.e. between measured samples) a smooth graphic that is by no means similar to

what is observed at coarser scales. This discrepancy is important for the problem at hand,

because we need to check the behaviour of the prediction algorithms when the samples are

noisy. We therefore propose a different approach, which was inspired by the apparent

statistical self-affinity of the measured power attenuation. In Figure 4, the same rain event is

magnified and suitably rescaled. One can see what appears to be the footprint of a rescaled

self affine random process: without the help of the numbers on the horizontal axis, it would

be difficult to tell whether any one picture is taken on a greater or smaller scale than the

others.

While interpolation analyses are commonly carried out by using elementary functions,

which are derivable and hence smoothed at a small enough scale, in most cases this approach

is only dictated by simplicity issues, and by the use of a common language of science. In the

last few decades the concept of fractal geometry has emerged as a paradigm that gives

scientists a new common language, which is useful for dealing with natural phenomena that

cannot be approximated by elementary functions without losing their meaning [19].

By using a fractal language we manage, in a natural way, to account for the oscillating

behaviour of the attenuation traces, which is the most important feature a measurement and

prediction system has to deal with.

3. Fractional Brownian motion and statistical self-affinity

A stochastic process A(t) is said to be statistically self-affine if, for any given positive real

number r, its statistics are the same as those of the process kA t / r( ), where k depends on r.



Nedo Celandroni, Francesco Potortì: Modeling Ka band scintillation as a fractal process

Preprint of an article published on the IEEE JOURNAL on SELECTED AREAS in COMMUNICATIONS, VOL. 17, No. 2
Copyright 1999 by IEEE. <URL: http://www.ieee.org/>4

One such process is Brownian Gaussian motion, that is, a process with stationary independent

Gaussian increments.

Let us denote this process by B. If we consider discrete times ti , Bi +1 − Bi  is, by definition,

a Gaussian random variable with null mean and variance σ 2 . The increment Bi +1 − Bi  is

stationary, that is, it does not depend on the index i. Moreover, it is independent of other

increments as well , that is, the increments Bi +1 − Bi  are i.i.d. variables. Given these properties,

the increment process W i, j( ) = Bi − Bj  is only dependent on the difference k = i-j, so that it

can be written as W(k). A consequence is that W(k) is a Gaussian random variable with null

mean and variance equal to kσ 2 . In fact µ W k( )( )= kµ W 1( )( )= 0, and

σ 2 W k( )( )= kσ 2 W 1( )( ).

Note that saying that the increments are stationary, or that the increment process

W(k) = B(t)-B(t+k) is independent of t can also be expressed by saying that the Brownian

motion is memoryless. At any instant t  the evolution of the process for t > t  is only

dependent on the value B(t), in particular it is independent of past history.

The same concepts can be applied to the continuous time domain, where W(τ) = B(t)-

B(t+τ) is the difference process, which is independent of t, but only depends on τ. As with the

discrete case, W(τ) has a null mean and a variance proportional to τ. B(t), in the continuous

domain, can be viewed as the integral of white Gaussian noise, or even as the output of a

linear system with a transfer function G such that G f( )2
∝ f −2  whose input is fed with white

Gaussian noise. Hereafter, unless otherwise specified, we will refer to Brownian motion

without distinguishing between discrete and continuous time.

Gaussian Brownian motion, as defined above, is a statistically self-aff ine process such that

B(t) is statistically indistinguishable from rB t / r( ). This property will be central to the

following discussions. It means that stretching the stochastic process B(t) along the horizontal

axis by r times and along the vertical axis by r  times yields a new stochastic process which

has the same statistics as B(t) or, more precisely, B(t) and rB t / r( ) have the same finite

dimensional joint distributions. The reason is that B(t) is completely defined by the variance

of the null -mean, Gaussian increments W(τ) = B(t)-B(t+τ) and, since the variance of W(τ) is

proportional to τ, B(t) has increments that are distributed like those of rB t / r( ). This fact

can also be expressed by saying that the “slowed” process B(t/r) is properly rescaled by

magnifying it by r 0.5  times.
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Figure 1: Fractional Brownian motion with three different values of the Hurst parameter.

Fractional Brownian motion (fBm) is an extension of these concepts. Gaussian fBm can be

defined as a process with stationary Gaussian increments such that B(t) has the same statistics

as r H
B t / r( ), where H ∈ [0; 1] is known as the Hurst parameter of the process. The same

process can be obtained by filtering white Gaussian noise through a linear system with

transfer function G such that G f( )2 ∝ f − β , where β = 1+2H, hence β ∈ [1; 3] [4, §1.4.2].

Figure 1 shows several instances of fBm processes with different values of the Hurst

parameter. The increments of fBm are correlated, apart from the case H = 0.5, when fBm is

reduced to “ordinary” Brownian motion, whose increments are uncorrelated.

The fractal dimension of the trace of one-dimensional fBm is D = 2-H [4, §1.6], while the

zeroset of an fBm trace, that is its intersection with the ordinate axis, has a dimension D = 1-

H [3, p. 252]. We call zeroset gaps the intervals of return of the trace to 0, that is, the

distances between successive points in the zeroset. It can be shown that the lengths U of the

gaps have a power (Pareto) distribution, such that P U > u{ }= t− D  [3, p. 236]. A distribution

of this kind has the effect of clustering the instants of crossing of a horizontal li ne, even

though the gap lengths are independent. Looking at a zero at a higher level of detail , almost

every zero is replaced by a whole cluster of points [3, p. 240].

The difference process of a Gaussian fBm is called Gaussian Hurst noise [3, pg.249], or

fractional Gaussian noise (fGn for short). For H = 0.5, fGn is the ordinary white Gaussian

noise, which exhibits no persistence, that is, its values at different points are uncorrelated. For

0.5 < H ≤ 1, fGn is persistent (positively autocorrelated), while it is antipersistent (negatively

autocorrelated) for 0 ≤ H < 0.5. The power spectrum of fGn is proportional to f
− β +2 .

fGn is observed in many natural and artificial phenomena: in most electronic components

of varying degrees of complexity and different technologies, in time measurements, in the

flow variations of rivers [3, p.249], in the flow of automobiles in expressways [8], and in that

of packets in a local area network [7]. It is also found in both the pitch and loudness values of

ancient and contemporary music in practically all cultures [4, §1.2.4].

We have said that fBm with H > 0.5 has positively correlated increments. This means that,

once the trace begins to grow, it is more likely that it will continue to grow rather than
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decrease. The opposite is true when H < 0.5: after a positive increment, a negative increment

is more likely. For ordinary Brownian motion, where H = 0.5, any increment is independent

of the past history of the motion. The visual appearance of an fBm trace is increasingly

jagged as H decreases from 1 to 0. In the border case of H = 1, the trace is a straight line

whose slope is Gaussian, and whose fractal dimension is 1, equal to the topological

dimension. In the other border case, H = 0, fBm becomes a kind of 1/f noise, the most

common kind of noise found in nature whose origin, many decades of investigation

notwithstanding, is still a mystery [4, §1.2.3]. Thus ordinary Gaussian Brownian motion is in

the middle between a straight line and a Gaussian 1/f noise.

An fBm process is described by two parameters alone: its unitary variance σ 2 = W 1( ) and

its Hurst parameter H. Let us view fBm as the graph of the displacement of a fractional

Gaussian random walker moving in discrete steps. σ represents the walker’s speed, or the

mean square root of the length of his/her steps. H represents the walker’s tendency to follow

the same direction after each step. When H > 0.5, the correlation between successive steps is

positive, so the direction is usually the same. The correlation is negative if H < 0.5, so the

direction is usually inverted at each step, and no correlation exists between successive steps

when H = 0.5, that is, when the process is a memoryless ordinary Brownian motion.

4. Characterisation of the scintillation process

We started from a data set chosen from the results of the propagation experiment, in Ka

band, carried out on the Olympus satellit e by the CSTS (Centro Studi sulle

Telecomunicazioni Spaziali ) Institute, on behalf of the Italian Space Agency (ASI). The up-

link (30 GHz) and down-link (20 GHz) samples considered were 1 second averages,

expressed in dB, of the signal power attenuation with respect to clear sky conditions. The

samples relate to 10 significant events for a total of 180,000 s recorded at the Spino d’Adda

(North of Italy) station, collected from August to October, 1992. The slant path elevation

angle was 30.6Ý�DQG�WKH�DQWHQQD�GLDPHWHU�ZDV����P�
The attenuation versus time plot recalls the behaviour of a self-similar or self-aff ine

process (see Figure 1), whose analysis normally entails inspecting samples over a wide range

of time scales. However, since our study focuses on fade countermeasure systems, we only

look at the characteristics of the process in the range of a few seconds (this choice will be

discussed later on), instead of considering the overall shape of the trace of the attenuation

events. In practice, we analyse the scintill ation process, which is commonly identified for

frequencies above a few hundredths of a Hertz (0.02-0.03 Hz in [1, 20]). We expect to find

that the scintill ation process depends on the rain fade level, other conditions being equal. In

other words, we are trying to find a dependence of the high-frequency component of the
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attenuation process (i.e. scintill ation) on the low-frequency component of the same process

(i.e. rain fade). To this end, we analyse the difference process of the scintill ation using the

following procedure.

Denoting by A  the attenuation value expressed in dB, we consider the difference

processW t1,t2( )= A t2( )− A t1( ) which, for suff iciently small t = t2 − t1 , is the difference

process of the scintill ation. Under the same assumption of a suff iciently small t, we assume

that the scintill ation process is stationary. In order to investigate the behaviour of the

scintill ation process versus the rain fade level, we divide the entire sample data into rain fade

bins, with an amplitude of 1 dB for the down- and 2 dB for the up-link rain fades,

respectively. Thus, denoting by An  the rain fade at the centre of the n-th bin, we have

W t1,t2 , An( )= W t, An( ) for t << 1/0.03, according to the above cited figures. In order to find

the rain fade level relative to each sample, we use a sharp low-pass filter with a cutoff

frequency of 0.1 Hz.

The available data are samples of the attenuation process averaged over 1 s intervals, i.e.

we only have A(t) with t = 1, 2, 3, …. For each pair of values t and An , the process W  is

assumed to have the distribution N(0, σW

2 ) . Indeed, a Chi-Square test on the distribution of

W(t, An) gives acceptable results for values of t = 1, 2 and 3 s, i.e. in the order of 1-5% level

of significance. We notice that a related assumption is made in [20, 23, 28], where the

variance of the scintill ation is considered. Unfortunately, while the lower bins are very rich in

samples, the higher ones are not, because of the low probabilit y of recording very high

attenuation values. In these cases the above assumption is not proved by our data, so we

limited our analysis to the attenuation range where an acceptable number of samples is

available for each bin. Fixing this number to 300, the attenuation limits are 25 dB for the up-

link and 16 dB for the down-link, respectively.

By visual inspection and by analogy with many natural phenomena, as previously

discussed, we approximate the scintill ation with an fBm process. We begin by computing the

Hurst parameter of the scintill ation process, then we show a visual justification of our

hypothesis.

We assume that the variance of the scintill ation difference process W can be expressed as

σW
2 = Vt 2H , (1)

where the parameters H (the Hurst parameter) and V generally depend on An .

To evaluate such parameters, σW
2 ( t, An )  is computed for An  from A1 to Anmax

 dB, and for t

equal to 1, 2 and 3 s. For each value τ of t, σW
2 τ , An( ) is the variance of W τ, An( ), that is, the

variance of A t + τ( ) − A t ( )[ ], for all t  such that the low-frequency component of A t ( )
belongs to the bin An. Then, for each value τ of t, the values of σW

2 τ , An( ) are interpolated with
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a 3rd order polynomial to smooth the data (see Figure 2a). Finally, for each An, equation (1) is

used to fit the smoothed data using a non-linear least square interpolation method with

parameters V and H (see Figure 2b).

(a)      (b)

Figure 2: Examples of data interpolations: a) smoothing the original data. b) fitting
equation (1) to the smoothed data.

The resulting values for the V and H parameters in the up-link (Vu , Hu ) and in the down-

link (Vd , Hd ) are plotted in Figure 3 versus the rain fade An. The following interpolating

polynomials of V and H are also depicted:

Vu = 0.033 + 9.4 ⋅10−5 Au + 9.7 ⋅10−6 Au
2 + 7.5 ⋅10−6 Au

3

Vd = 0.02 − 0.0022  Ad + 0.00035  Ad
2

 
 
 

,
Hu = 0.23 +0.014Au

Hd = 0.23 + 0.019Ad

 
 
 

.
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Figure 3: Interpolation of the parameters V and H as functions of up and down-link
attenuations

The method followed does not rigorously give an indication as to the self-affine nature of

the process, nor does it give a precise estimation of the Hurst parameter. Other methods are

commonly used to estimate the Hurst parameter of a process [6, 7], one of which can be used

to compute confidence intervals. All these methods also give an idea of whether the process

being measured can be considered to be self-affine. In order to get such information, an

analysis of the process that spans several decades of time scales is required, while we only

focused on the very limited range 1-3 s. One reason for this choice, as already mentioned, is

that we are not interested in longer time spans, because our aim is to study fade

countermeasure systems. More importantly, extending the time range is not possible, because

of the influence of the rain fade process at lower frequencies. In other words, the hypothesis

of a stationary scintillation process does not hold for time ranges greater than a few seconds.

This is not really a problem for our purposes, since we are trying to characterise the short-

term behaviour of the scintillation process in order to find the dependencies of its parameters

on the attenuation.

Given the above observations, it would be more precise to use the term pseudo-Hurst

parameter when dealing with the value of H obtained with the described method. However,

for simplicity’s sake, we’ll continue to call H the Hurst parameter.

In order to get a visual impression of the self-affine property, Figure 4 plots different

portions of the attenuation, each rescaled using the computed Hurst parameter.
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Figure 4: Rescaled portions of the attenuation time sequence. The numbers on the
horizontal axis are seconds, those on the vertical axis are rescaled dB.

5. Physical considerations about fractal characterisation

The interpolation criterion we have described so far is based solely on geometrical

considerations. Indeed, all parameters are deduced from an analysis of the values of the

measured samples. Let us try to support this procedure which some justification that builds on

physical findings and theories. In this section we suggest some possible explanations and

analogies, most of which should be taken as ideas for further research in this potentially

fertile field.

The fundamental relationships we found are that the scintillation power σ 2  and its Hurst

parameter are both dependent on the attenuation. As far as the scintillation power is

concerned, most authors would admit that it should be considered constant with respect to the

attenuation value. However, recent findings [20] suggest that a relationship exists, and it has

the same sign as our statistics show.
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f-1 (H = 0)

f-8/3 (H = 0.83)

fc fn

Figure 5: Power spectrum of the scintillation process as described in [1].

As far as the variability of the parameter H with the attenuation value is concerned, we will

refer to the spectral analysis of the scintillation process. In fact, it is commonly accepted [1,

20, 22] that the power spectrum of the scintillation in log-log scale follows an f
−1  slope

followed by an f
− 8 3  slope, as shown in Figure 5, and that the corner frequency fc is

dependent on many parameters. The high frequency part of the scintillation spectrum when

rain occurs, is similar to that observed in clear sky conditions [28]. To our knowledge, no

studies exist on the dependence of the corner frequency upon the attenuation value. In any

case, fc is usually assumed to lie in the range 0.04-0.66 Hz, which is compatible with the time

range 1-3 s of our analysis. If fc lies within this range, then its dependence on the rain fade,

whose laws are as yet unknown, can be reasonably thought to cause the dependence of the

Hurst parameter on the rain fade. In fact, as outlined above, the power density spectrum of an

fBm process exhibits a slope of f − β , where β = 1+2H. Since we assume that the slopes of the

power density spectrum of the scintillation process around fc are f −1  for f < fc and f − 8 3  for

f > fc, H should lie in the range [0; 0.83]. This observation is significant because this range is

compatible both with the permitted range of H, which is [0; 1], and with our findings, which

give a range of approximately [0.2; 0.6]. Here we suggest that the dependence we observed of

the Hurst parameter on the attenuation can be attributed to the variability of the scintillation

power spectrum with the rain fade. If the spectrum is approximated by two asymptotes with

slopes f −1  and f − 8 3 , then H can be thought of as a function of fc, which in turn depends on

the rain fade.

In order to obtain this function, while finding further confirmation of our hypothesis, we

analysed a numerically generated scintillation noise, taking the model depicted in Figure 5 as

the power spectrum. We set fn equal to 3 Hz, using the value measured in [20], and we

measured the pseudo-Hurst parameter of the resulting process versus fc. The result of the

experiment is plotted in Figure 6. The process was generated with a frequency of 64 Hz and

then integrated and dumped in 1 s intervals, thus simulating the measurement procedure of

the attenuation samples at our disposal. The H parameter was measured in the time span of

3 s. It was interesting to notice how using a frequency higher than 1 Hz for the integrate and
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dump procedure didn’t produce significative changes in the results while in the range

[1, 8] Hz. For higher frequencies our method for measuring the pseudo-Hurst parameter

began giving inconsistent results, because of the background noise above 3 Hz. The same

background noise is the reason why the samples in the plot deviate from a straight line for fc
greater than approximately 0.3 Hz.

In order to keep the analysis simple, we adopted a first-order least squares fit to the first 65

samples, covering a frequency range for fc equal to [0.04, 0.25] Hz, thus obtaining

H = 0.83 −1.7 fc . This equation coupled with the interpolating functions (1) let us obtain the

following tentative relationships between fc and the atmospheric attenuation A expressed in

dB:

fc = 0.35 − 0.008Au, fc = 0.35 − 0.011Ad .
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H = 0.83 - 1.7f c 

Figure 6: Results of the numerical experiment of measuring the pseudo-Hurst parameter of
a synthetically generated scintillation noise while varying fc.

As a consistency check of the overall procedure, we applied it to simulated samples with fn

set to infinity, and setting fc either to 0 or to infinity, thus obtaining a power spectrum with a

single slope of either -1 or -8/3. As expected, we were able to make precise measurements of

the Hurst parameter, by considering intervals of time significantly longer than 3 s. The same

measurements made in the presence of more than one slope in the power spectrum yields

inconsistent results for long time intervals, analogously to the real samples.
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The modeling of scintillation as an fBm process (at least for the time scales mentioned)

makes even more sense when the distribution of the zeroset gap lengths is analysed. As

mentioned above, we would expect this distribution to decay like u-D, where D = 1-H, that is,

D should lie in the range [0.17; 1]. From [27], in fact, we can see that, at least in the

frequency range [0.3; 3] Hz, which is the significant range for our analysis, the slope of the

measured distribution is compatible with our model.

6. Random midpoint displacement interpolation

Once we assume that the scintillation process is fractal, and that it can be described locally

as an fBm whose parameters are functions of the local attenuation value, we can finally use a

meaningful method to interpolate the process between successive samples. Our assumption is

that the fractal characterisation of the scintillation process we have made in the time range 1-

3 s also holds for smaller time scales. The scintillation at smaller time scales can then be

approximated in a significant way by an fBm process whose fractal dimension is locally that

of the scintillation process, which we know from the previous procedure.

We then need to synthesise a pseudo-random fBm process with the constraints that its

graph passes through the 1 s samples of the measured attenuation, and that its σ 2  and its

fractal dimension (hence the Hurst parameter) are locally the same as those of the measured

attenuation.

Of the various methods available for generating fBm, many of which are dealt with in [3,

4], we chose the random midpoint displacement algorithm, rmd for short [6]. It is much

simpler and quicker than the other methods, though it is only an approximation of a real fBm

process. Despite this, rmd is sufficient for most uses. In [6] the authors show that an

acceptable degree of precision is achieved as far as the target value of H is concerned, unless

H is very far from the central value 0.5. For the kind of application we are investigating the

interesting values of the Hurst parameter are generally close to 0.5, which makes rmd

acceptable for our purposes. The authors of [6] also suggest that rmd is particularly suitable

for fractal interpolation, as this application only minimally suffers from the imperfect

correlation between different points in the synthetic trace. In fact, the overall behaviour of the

trace is dictated by the samples that are interpolated.

An example of random fractal interpolation obtained using rmd is given in Figure 7. Here,

14 samples of measured attenuation at 30 Ghz are interpolated in order to get 50 samples per

second, instead of the original 1 sample per second. The values of H and of the standard

deviation of random generated samples are computed from the model that is described above.

The graph in Figure 7 is only an example of the infinite number of ways to randomly

interpolate some given points, all of which share the same statistical parameters.
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Figure 7: An example of the interpolation procedure. Starting from 14 1 s-spaced points we
randomly compute 50 values per second. Values on the horizontal axis are 1/50-th of a
second, values on the vertical axis are attenuations in dB.

7. Optimising measurement times for fading estimation.

The methods to estimate the signal degradation reported in [14-16, 26] are based on

measurements made either on the bit error rate or on pseudo-error statistics. The hard or soft

decision levels of the demodulated data bits are inspected to obtain a measure of signal

quality, usually the value of Eb/No. The estimation obtained has a variance which is inversely

proportional to the number of inspected bits and thus to the measurement time interval.

Considering that the variance of the attenuation increases with time according to our model,

expressed by relation (1), it is possible to optimise the measurement times [26].

Let us denote by t∆  the interval of time between the estimation of the signal degradation

and the instant the destination user receives data sent with the adaptive countermeasure

chosen according to the estimation. Let tm  be the measurement time, and let us assume that

the measurement error and the attenuation difference process are independent and both

Gaussian. The total error on the signal quality estimation is then Gaussian with a variance σq
2

given by
σq

2 = σ m
2 (tm ) +σ ∆

2 (tm + t∆ )

where σ m
2  is the variance of the measurement error and σ ∆

2  is the variance of signal quality

evolution at the time tm + t∆ , computed according to our attenuation model. t∆  depends on the
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fade countermeasure system adopted, and can be assumed to be constant. σm
2  decreases, while

σ∆
2  increases with the measurement time, and σq

2  can be minimised with respect to tm . Once

the minimum σq
2  has been obtained, a suitable power margin can be computed in order to

guarantee the bit error rate (BER) required by the user. The margin M , which is generally

dependent on the characteristic of the BER versus the signal to noise ratio, and thus

dependent on the modulation/coding scheme, is computed as follows.

Denoting by pe  the probability of error, and by R  the channel Eb / N0  (bit energy over the

one sided noise spectral density) expressed in dB, we assume that we know the relation

pe (R)  at the data decoder for the coding type considered. The average pe , for a given value

R  of the channel Eb / N0 , which is estimated with a variance σ
R 

2 , is given by

pe (R ) =  pe (R)
1

2π  σ
R 

−∞

+∞

∫ e
− (R−R )2

2σR 
2

dR (2)

Substituting pe  given by (2) in the inverse function of pe (R) , we get the equivalent

value Re pe(R )( ). The margin to be applied on the estimated value R  is then M(R) = R − Re .

For a numerical example, we have considered B/QPSK modulated data, both uncoded and

convolutionally encoded (k = 7, rate =1/2) and Viterbi decoded. For the uncoded case we

have [24]

pe = 1

2
erfc 10

R / 20( ). (3)

For the 1/2 coded case, by interpolating the decoder results [25], we have obtained the

function

pe =10−(1.6R+3)., (4)

which is linear in bilogarithmic scale. For the evaluation of the integral in (2) it is

sufficient to consider the integration limits of ±3σ R  to get a good approximation. This assures

us about the validity of the application field of relations (3) and (4).

In Figure 8 the margin M  is reported as a function of the varianceσR
2 , and, in the uncoded

case, for various values of Eb / N0 . Since M  increases with the absolute value of the

derivative of the function pe (R) , there is no dependence on Eb / N0  in the 1/2 coded case,

where this derivative is constant.
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Figure 8: Margin to take into account over the estimation of the Eb / N0  ratio as functions
of the Eb / N0  variance. Both uncoded and 1/2 coded cases are shown.

Conclusions

The model we have presented characterises the short time evolution of the attenuation

process, mostly due to scintillation, which is assumed to be stationary when the rain fade

stays the same.

We have considered attenuation sample data, spread over a two-month period, at two fixed

frequencies, and with a fixed elevation angle and antenna size, so no attempt has been made

to consider the dependency of the process on these factors. It is well known [21] that the

amplitude of rapid level fluctuations of the attenuation depends on a lot of factors such as

elevation angle, antenna gain, season and latitude of the earth station. Corrections to apply for

different elevation angles and antenna sizes can be found in [22], while [23, 28] gives some

ideas about the dependence on season and on some other factors in clear air conditions alone.

We conclude therefore that the derivation of a model which has a more general validity needs

a more thorough statistical analysis and a much larger sample of attenuation data.

The model presented should be viewed as a proposal for further investigations. Should it

prove to be reliable, it would be useful for the study of fade countermeasure systems such as

those required in digital satellite communications, especially when the Ka band is employed.
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