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Abstract. Broadcasting is an efficient and scalable way of transmitting data over
wireless channels to an unlimited number of clients. In this paper the problem of
allocating data to multiple channels is studied, assuming flat data scheduling per
channel and the presence of unrecoverable channel transmission errors. The objec-
tive is that of minimizing the average expected delay experienced by the clients.
Two different channel error models are considered: the Bernoulli model and the
simplified Gilbert-Elliot one. In the former model, each packet transmission has the
same probability to fail and each transmission error is independent from the oth-
ers. In the latter one, bursts of erroneous or error-free packet transmissions due to
wireless fading channels are modeled. For both channel error models, optimal solu-
tions can be found in polynomial time when all data items have unit lengths, while
heuristics are presented when data items have non-unit lengths. Extensive simula-
tions, performed on benchmarks whose item popularities follow Zipf distributions,
show that good sub-optimal solutions are found.
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Introduction

In wireless asymmetric communications, data broadcasting is an efficient way of simul-
taneously disseminating data items to a large number of clients [17]. Consider data ser-
vices on cellular networks, such as stock quotes, weather infos, traffic news, where data
are continuously broadcast to clients that may desire them at any instant of time. In this
scenario, a server at the base-station repeatedly transmits data items from a given set over
wireless channels, while clients passively listen to the shared channels waiting for their
desired item. The server has to pursue a data allocation strategy for assigning items to
channels and a broadcast schedule for deciding which item has to be transmitted on each
channel at any time instant. Therefore, efficient data allocation and broadcast scheduling
algorithms have to minimize the client expected delay, that is, the average amount of time
spent by a client before receiving the item he needs. Such a delay increases with the size
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of the set of the data items to be transmitted by the server. Indeed, the client has to wait
for many unwanted data before receiving his own data. Moreover, the client expected
delay may be influenced by transmission errors because items are not always received
correctly by the client. Although data are usually encoded using error correcting codes
(ECC) allowing some recoverable errors to be corrected by the client without affecting
the average expected delay, there are several transmission errors which still cannot be
corrected using ECC. Such unrecoverable errors affect the client expected delay, because
the resulting corrupted items have to be discarded and the client must wait until the same
item is broadcast again by the server.

Several variants for the problem of data allocation and broadcast scheduling have
been proposed in the literature [1,2,3,4,5,6,9,10,11,13,15,16,19,21,22].

The database community usually partitions the data among the channels and then
adopts a flat broadcast schedule on each channel [5,15,22]. In such a way, the allocation
of data to channels becomes critical for reducing the average expected delay, while the
flat schedule on each channel merely consists in cyclically broadcasting in an arbitrary
fixed order, that is once at a time in a round-robin fashion, the items assigned to the
same channel [1]. In order to reduce the average expected delay, a skewed data allocation
is used where items are partitioned according to their popularities so that the most re-
quested items appear in a channel with shorter period. Assuming that each item transmit-
ted by the server is always received correctly by the client, a solution that minimizes the
average expected delay can be found in polynomial time in the case of unit lengths [22],
that is when all the items have a unit transmission time, whereas the problem becomes
computationally intractable for non-unit lengths [5]. In this latter case, several heuris-
tics have been developed in [4,22], which have been tested on some benchmarks where
item popularities follow Zipf distributions. Such distributions are used to characterize
the popularity of one item among a set of similar data, like a web page in a web site [8].

The data allocation problem has not been investigated by the database community
when the wireless channels are subject to transmission errors. In contrast, a wireless en-
vironment subject to errors has been considered by the networking community, which
however concentrates only on finding broadcast scheduling for a single channel to min-
imize the average expected delay [6,10,11,19]. Indeed, the networking community as-
sumes all items replicated over all channels, and therefore no data allocation to the chan-
nels is needed. Although it is still unknown whether a broadcast schedule on a single
channel with minimum average delay can be found in polynomial time or not, almost all
the proposed solutions follow the square root rule (SRR), a heuristic which in practice
finds near-optimal schedules [3]. The aim of SRR is to produce a broadcast schedule
where each data item appears with equally spaced replicas, whose frequency is propor-
tional to the square root of its popularity and inversely proportional to the square root
of its length. In particular, the solution proposed by [19] adapts the SRR solution to the
case of unrecoverable errors. In such a case, since corrupted items must be discarded
worsening the average expected delay, the spacing among replicas has to be properly
recomputed.

The present paper considers the data allocation problem under the assumption of
flat data schedule per channel [4,5,22], as studied by the database community, but also
copes with the presence of unrecoverable erroneous transmissions, as studied in [7,19].
The behavior of wireless channels is described by means of two different error models:
the Bernoulli model and the simplified Gilbert-Elliot one [20]. In the former each packet



transmission has the same probability q to fail and 1−q to succeed, and each transmission
error is independent from the others. In contrast, the latter model is able to capture bursti-
ness, that is sequences of erroneous or error-free packet transmissions, and well approxi-
mates the error characteristics of certain wireless fading channels [18]. For both channel
error models, it is shown that an optimum solution, namely one minimizing the average
expected delay, can be found in polynomial time for the data allocation problem when
the data items have unit lengths. Instead, sub-optimal solutions found by heuristic algo-
rithms are exhibited for both channel error models and items with non-unit lengths. Ex-
tensive simulations show that such heuristics provide good sub-optimal solutions when
tested on benchmarks whose items popularities are characterized by Zipf distributions.
Moreover, it is proved that optimal solutions can be found in pseudo-polynomial time
when there are only two channels, the items have non-unit lengths, and the Bernoulli
channel error model is used.

The rest of this paper is so organized. Section 1 first gives notations, definitions as
well as the problem statement, and then reviews the basic algorithms known so far in
the case of error-free channel transmissions. Sections 2 and 3 consider the Bernoulli and
the Gilbert-Elliot channel error model, respectively, and illustrate how the previously
reviewed algorithms can be adapted to cope with erroneous transmissions. Experimental
evaluations of the algorithms are reported at the end of both Sections 2 and 3. Finally,
conclusions are offered in Section 4.

1. Error-Free Channels

Consider a set of K identical error-free channels, and a set D = {d1, d2, . . . , dN} of N
data items. Each item di is characterized by a popularity pi and a length zi, with 1 ≤ i ≤
N . The popularity pi represents the demand probability of item di, namely its probability
to be requested by the clients, and it does not vary along the time. Clearly,

∑N

i=1 pi = 1.
The length zi is an integer number, counting how many packets are required to transmit
item di on any channel and it includes the encoding of the item with an error correcting
code. For the sake of simplicity, it is assumed that a packet transmission requires one
time unit. Each di is assumed to be non preemptive, that is, its transmission cannot be
interrupted. When all data lengths are equal to one, i.e., zi = 1 for 1 ≤ i ≤ N , the
lengths are called unit lengths, otherwise they are said to be non-unit lengths. The sum
of all the item lengths and the maximum item length are denoted, respectively, by Z and
z, namely Z =

∑N

i=1 zi and z = max1≤i≤Nzi.
The expected delay ti is the expected number of packets a client must wait for re-

ceiving item di. The average expected delay (AED) is the number of packets a client
must wait on the average for receiving any item, and is computed as the sum over all
items of their expected delay multiplied by their popularity, that is

AED =

N∑

i=1

tipi (1)

When the items are partitioned into K groups G1, . . . , GK , where group Gk collects the
data items assigned to channel k, and a flat schedule is adopted for each channel, that
is, the items in Gk are cyclically broadcast in an arbitrary fixed order, Equation 1 can



be simplified. Indeed, if item di is assigned to channel k, and assuming that clients can
start to listen at any instant of time with the same probability, then ti becomes Zk

2 , where
Zk is the schedule period on channel k, i.e., Zk =

∑

di∈Gk
zi. Then, Equation 1 can be

rewritten as

AED =

N∑

i=1

tipi =

K∑

k=1

∑

di∈Gk

Zk

2
pi =

K∑

k=1

(

Zk

2

∑

di∈Gk

pi

)

=
1

2

K∑

k=1

ZkPk (2)

where Pk denotes the sum of the popularities of the items assigned to channel k, i.e.,
Pk =

∑

di∈Gk
pi. Note that, in the unit length case, the period Zk coincides with the

cardinality of Gk, which will be denoted by Nk.
Summarizing, given K error-free channels, a set D of N items, where each data

item di comes along with its popularity pi and its integer length zi, the Data Allocation
Problem consists in partitioning D into K groups G1, . . . , GK , so as to minimize the
AED objective function given in Equation 2. Note that, in the special case of unit lengths,
the corresponding objective function is derived replacing Zk with Nk in Equation 2.

Almost all the algorithms proposed so far for the data allocation problem on multiple
error-free channels are based on dynamic programming. Such algorithms restrict the
search for the solutions to the so called segmentations, that is, partitions obtained by
considering the items ordered by their indices, and by assigning items with consecutive
indices to each channel. Formally, a segmentation is a partition of the ordered sequence
d1, . . . , dN into K adjacent segments G1, . . . , GK , each of consecutive items, as follows:

d1, . . . , dB1
︸ ︷︷ ︸

G1

, dB1+1, . . . , dB2
︸ ︷︷ ︸

G2

, . . . , dBK−1+1, . . . , dN
︸ ︷︷ ︸

GK

A segmentation can be compactly denoted by the (K − 1)-tuple

(B1, B2, . . . , BK−1)

of its right borders, where border Bk is the index of the last item that belongs to group
Gk. Notice that it is not necessary to specify BK , the index of the last item of the last
group, because its value will be N for any segmentation.

Almost all the dynamic programming algorithms for multiple channels assume that
the items d1, d2, . . . , dN are indexed by non-increasing pi

zi

ratios, that is p1

z1
≥ p2

z2
≥

· · · ≥ pN

zN

. Observe that for unit lengths this means that the items are sorted by non-
increasing popularities. Let SOLk,n denote a segmentation for grouping items d1, . . . dn

into k groups and let solk,n be its corresponding cost, for any k ≤ K and n ≤ N .
Moreover, let Ci,j denote the cost of assigning to a single channel the consecutive items
di, . . . , dj :

Ci,j =

j
∑

h=i

thph =

j
∑

h=i

(

1

2

j
∑

h=i

zh

)

ph =
1

2

(
j
∑

h=i

zh

)(
j
∑

h=i

ph

)

(3)

For unit lengths, the above formula simplifies as Ci,j = 1
2 (j − i + 1)

∑j

h=i ph. Note
that, once the items are sorted, all the Ci,j’s can be found in O(N) time by means of
prefix-sum computations [21].



The five main algorithms for solving the problem are now briefly surveyed. The
first three of them, called DP, Dichotomic, and Dlinear, assume items sorted by non-
increasing pi

zi

’s (and thus they search for segmentations) and work for an arbitrary num-
ber of channels. Whereas, the other two, called Knapsack and SRR, do not assume sorted
items and work for two channels and one channel, respectively. The first four algorithms
are off-line and employ dynamic programming, while the last algorithm is on-line and
does not use dynamic programming.

1.1. The DP Algorithm

The DP algorithm is a dynamic programming implementation of the following recur-
rence, where k varies from 1 to K and, for each fixed k, n varies from 1 to N :

solk,n =

{
C1,n if k = 1
min1≤`≤n−1{solk−1,` + C`+1,n} if k > 1

(4)

For any value of k and n, the DP algorithm selects the best segmentation obtained by
considering the n − 1 segmentations already computed for the first k − 1 channels
and for the first ` items, and by combining each of them with the cost of assigning
the last n − ` items to the single k-th channel. In details, consider the K × N ma-
trix M with Mk,n = solk,n. The entries of M are computed row by row applying Re-
currence 4. Clearly, MK,N contains the cost of a solution for the original problem. In
order to actually construct the corresponding segmentation, a second matrix F is em-
ployed to keep track of the final borders of segmentations corresponding to entries of
M . In Recurrence 4, the value of ` which minimizes the right-hand-side is the final bor-
der for the solution SOLk,n and is stored in Fk,n. Hence, the segmentation is given by
SOLK,N = (B1, B2, . . . , BK−1) where, starting from BK = N , the value of Bk is
equal to Fk+1,Bk+1

, for k = K − 1, . . . , 1. The DP algorithm requires O(N 2K) time. It
finds an optimal solution in the case of unit lengths and a sub-optimal one in the case of
non-unit lengths [22].

1.2. The Dichotomic Algorithm

To improve on the time complexity of the DP algorithm, the Dichotomic algorithm has
been devised. Let Bn

h denote the h-th border of SOLk,n, with k > h ≥ 1. Assume that
SOLk−1,n has been found for every 1 ≤ n ≤ N . If SOLk,l and SOLk,r have been
found for some 1 ≤ l ≤ r ≤ N , then one knows that Bc

k−1 is between Bl
k−1 and Br

k−1,
for any l ≤ c ≤ r. Thus, choosing c as the middle point between l and r, Recurrence 4
can be rewritten as:

solk,d l+r

2
e = min

Bl

k−1
≤`≤Br

k−1

{solk−1,` + C`+1,d l+r

2
e} (5)

where Bl
k−1 and Br

k−1 are, respectively, the final borders of SOLk,l and SOLk,r.
Such a recurrence is iteratively solved within three nested loops which vary, respec-

tively, in the ranges 1 ≤ k ≤ K, 1 ≤ t ≤ dlog Ne, and 1 ≤ i ≤ 2t−1, and where
the indices l, r, and c are set as follows: l = d i−1

2t−1 (N + 1)e, r = d i
2t−1 (N + 1)e, and

c = d l+r
2 e = d 2i−1

2t (N + 1)e. In details, the Dichotomic algorithm is shown in Figure 1.



Input: N items sorted by non-increasing pi

zi

ratios, and K groups;

Initialize: for i from 1 to N do

for k from 1 to K do

if k = 1 then Mk,i ← Ck,i else Mk,i ←∞;
Loop 1: for k from 2 to K do

Fk,0 ← Fk,1 ← 1; Fk,N+1 ← N ;
Loop 2: for t from 1 to dlog Ne do

Loop 3: for i from 1 to 2t−1 do

c← d 2i−1

2t (N + 1)e;
l← d i−1

2t−1 (N + 1)e;
r← d i

2t−1 (N + 1)e;
if Mk,c =∞ then

Loop 4: for ` from Fk,l to Fk,r do

if Mk−1,` + C`+1,c < Mk,c then

Mk,c ←Mk−1,` + C`+1,c;
Fk,c ← `;

Figure 1. The Dichotomic algorithm.

It uses the two matrices M and F , whose entries are again filled up row by row (Loop 1).
A generic row k is filled in stages (Loop 2). Each stage corresponds to a particular value
of the variable t (Loop 3). The variable c corresponds to the index of the entry which
is currently being filled in stage t. The variables l (left) and r (right) correspond to the
indices of the entries nearest to c which have been already filled, with l < c < r. If no
entry before c has been already filled, then l = 1, and therefore the final border Fk,1 is
initialized to 1. If no entry after c has been filled, then r = N , and thus the final border
Fk,N+1 is initialized to N . To compute the entry c, the variable ` takes all values between
Fk,l and Fk,r. The index ` which minimizes the recurrence in Loop 4 is assigned to Fk,c,
while the corresponding minimum value is assigned to Mk,c.

The Dichotomic algorithm lowers the time complexity of the DP algorithm to
O(NK log N). As for the DP algorithm, the Dichotomic algorithm also finds optimal
and sub-optimal solutions for unit and non-unit lengths, respectively [5].

1.3. The Dlinear Algorithm

Fixed k and n, the Dlinear algorithm selects the feasible segmentations that satisfy the
following Recurrence:

solk,n =

{
C1,n if k = 1
solk−1,m + Cm+1,n if k > 1

(6)

where

m = min
B

n−1

k
≤`≤n−1

{` : solk−1,` + C`+1,n < solk−1,`+1 + C`+2,n} .



Input: N items sorted by non-increasing pi

zi

ratios, and K groups;
Initialize: for n from 1 to N do

M1,n ← C1,n ;
Loop 1: for k from 2 to K do

Fk,k ← k − 1;
Mk,k ←Mk−1,k−1 + Ck,k ;

Loop 2: for n from k + 1 to N do
`← Fk,n−1;
m← `;
Mk,n ←Mk−1,` + C`+1,n;
incr← false;

Loop 3: while ` ≤ n− 2 and ¬ incr do
temp←Mk−1,`+1 + C`+2,n;
if Mk,n ≥ temp then

Mk,n ← temp;
`← ` + 1;

else
incr← true;

m← `;
Fk,n ← m

Figure 2. The Dlinear algorithm.

In practice, Dlinear adapts Recurrence 4 by exploiting the property that, if SOLk,n−1 is
known, then one knows that Bn

k is no smaller than Bn−1
k , and by stopping the trials as

soon as the cost solk−1,` + C`+1,n of the solution starts to increase.
The Dlinear algorithm is shown in Figure 2. As before, matrices M and F are used,

which are filled row by row. Note that in Loop 1 the leftmost k − 1 entries in row k
of both M and F are meaningless, since at least one item has to be assigned to each
channel. The value of m in Recurrence 6 that gives Mk,n is computed iteratively in Loop
3 and stored in Fk,n.

The overall time complexity of the Dlinear algorithm is O(N(K + log N)). Thus
the Dlinear algorithm is even faster than the Dichotomic one, but the solutions it provides
are always sub-optimal, both in the unit and non-unit length case [4].

1.4. The Knapsack Algorithm

The Knapsack algorithm solves the problem when there are exactly 2 channels. In such
a case, the problem is to find a partition G1 and G2 such that 1

2 (Z1P1 + Z2P2) is min-
imized, where Pk and Zk denote the sum of the popularities and of the lengths, respec-
tively, of items in Gk, for k = 1 and 2. Clearly, P1 + P2 = 1 and Z1 + Z2 = Z. Without
loss of generality, Z1 ≤ Z2 can be assumed, and hence there are only bZ/2c possible
values for Z1.

Observe that Z1P1 + Z2P2 = Z1P1 + Z2(1−P1) = P1(Z1 −Z2) + Z2. When Z1

is fixed, also Z2 = Z − Z1 is fixed, and noting that Z1 − Z2 ≤ 0, minimizing Z1P1 +
Z2P2 is equivalent to maximizing P1. Therefore, the problem reduces to a particular
Knapsack problem [14] of capacity Z1, where each item di is characterized by a profit
pi and a weight zi. Specifically, the Knapsack problem consists in finding a subset S



of {d1, d2, . . . , dN} subject to the constraint
∑

dk∈S zk = Z1 so as to maximize the
objective function

∑

dk∈S pk.
To apply dynamic programming, consider two (N + 1) × (bZ/2c+ 1) matrices M

and X . The entry Mi,j , with 0 ≤ i ≤ N and 0 ≤ j ≤ bZ/2c, stores the value of the
objective function for the above Knapsack problem with items {d1, . . . , di} and capacity
j. Formally, Mi,j = max

∑

dk∈S pk such that
∑

dk∈S zk = j, where S ⊆ {d1, . . . , di}.
By definition, Mi,j = −∞ if the capacity j cannot be completely filled by any S. The
boolean entry Xi,j records whether the item di has been selected or not in the solution
of the Knapsack problem with items {d1, . . . , di} and capacity j, with 0 ≤ i ≤ N and
0 ≤ j ≤ bZ/2c.

The dynamic programming algorithm starts by initializing the first row of the matri-
ces in such a way that M0,0 = 0, M0,j = −∞ for 1 ≤ j ≤ bZ/2c, and X0,j = false

for 0 ≤ j ≤ bZ/2c. Then, for i = 1, 2, . . . , N and j = 0, 1, . . . , bZ/2c, Mi,j and Xi,j

are filled by using the following relations:

Mi,j =

{
Mi−1,j if j < zi

max{Mi−1,j , Mi−1,j−zi
+ pi} if j ≥ zi

(7)

Xi,j =

{
true if Mi,j = Mi−1,j−zi

+ pi 6= −∞
false otherwise

Note that it is possible that for certain values of j, with 0 ≤ j ≤ bZ/2c, there is no
solution for items {d1, . . . , di} such that the total sum of weights is exactly j. In such
cases, according to the definition, Recurrence 7 gives Mi,j = −∞. In contrast, if there
is a solution for items {d1, . . . , di} such that the total sum of weights is exactly j, then
Mi,j 6= −∞ and Mi,j gives the optimal value of the objective function.

Consider the last row of M . Any entry MN,j 6= −∞ gives the optimal P1 for the
2-channel data allocation problem with items {d1, . . . , dN} and Z1 = j. Therefore, the
entry, say MN,j, which minimizes 1

2

(

jMN,j + (Z − j)(1 − MN,j)
)

gives the optimal
AED for the original problem. Once MN,j has been found, it is easy to list out the items
which have been picked up in the optimal solution, by tracing back the solution path.
Specifically, if XN,j = true, then item dN is selected and the entry XN−1,j−zN

is
examined next; if XN,j = false, then item dN is not selected and the entry XN−1,j is
examined next. Such a procedure is repeated backwards until the row 0 of X is reached.
The selected items are assigned to group G1, while the remaining items are assigned to
group G2.

The Knapsack algorithm always finds an optimal solution for two channels and non-
unit lengths and its overall time complexity is O(NZ), which is pseudo-polynomial [5].
The algorithm is effective when the items have small length. For instance, if each item
length is bounded by a constant, then Z = O(N) and the overall time becomes O(N 2).

1.5. The SRR Algorithm

When there is only one channel, the DP, Dichotomic, and Dlinear algorithms provide a
trivial flat schedule with period Z. In such a case, each ti is equal to Z

2 and hence also
the AED is equal to Z

2 , regardless of the item popularities. To overcome this drawback,



a schedule is needed where the spacing between two consecutive transmissions of one
item is not the same for all items, but depends on both the popularity and the length of
such an item.

It has been shown in [19] that, in an optimal schedule, replicas of any item di should
be equally spaced with spacing

si =

(
N∑

h=1

√
phzh

)
√

zi

pi

(8)

In this way, the expected delay for item di becomes half of its spacing and thus, substi-
tuting ti = si

2 in Equation 1, the average expected delay becomes

AED =
1

2

(
N∑

i=1

√
pizi

)2

(9)

The AED value given in Equation 9 represents a lower bound which in general is
not achievable because the replicas cannot always be kept equally spaced. The SRR
algorithm is an on-line heuristic which tries to keep the replicas as equally spaced as
possible. For this purpose, it determines the item to be transmitted next by using the
decision rule s2

i
pi

zi

= constant, based on Equation 8. Let T denote the current time, let Ri

be the time at which the last replica of di has been transmitted (initialized to −1), and let
Gi = (T − Ri)

2 pi

zi
, where T − Ri is the spacing for item di if di would be transmitted

again at time T . At each instant of time T , the SRR algorithm evaluates the decision rule
Gi for all items di, 1 ≤ i ≤ N , selects for transmission at time T that item dh with
maximum Gh, and finally updates Rh = T and T = T + zh.

The SRR algorithm takes O(N) time to select the item to be transmitted. Such a
time can be reduced to O(M) by partitioning the items into M buckets according to their
G’s values [19].

2. Bernoulli Channel Error Model

In this section, unrecoverable channel transmission errors modeled by a geometric distri-
bution are taken into account. Under such an error model, each packet transmission over
every channel has the same probability q to fail and 1 − q to succeed, and each trans-
mission error is independent from the others, with 0 ≤ q ≤ 1. Since the environment is
asymmetric, a client cannot ask the server to immediately retransmit an item di which
has been received on channel k with an unrecoverable error. Indeed, the client has to
discard the item and then has to wait for a whole period Zk, until the next transmission
of di scheduled by the server. Even the next item transmission could be corrupted, and in
such a case an additional delay of Zk has to be waited. Therefore, the expected delay ti

has to take into account the extra waiting time due to a possible sequence of independent
unrecoverable errors.



2.1. Unit Length Items

Assume that the items have unit lengths, i.e., zi = 1 for 1 ≤ i ≤ N . Recall that in
such a case the period of channel k is Nk. If a client wants to receive item di, which is
transmitted on channel k, and the first transmission he can hear of di is error-free, then
the client waits on the average Nk

2 time units with probability 1 − q. Instead, if the first
transmission of di is erroneous, but the second one is error-free, then the client experi-
ences an average delay of Nk

2 + Nk time units with probability q(1 − q). Generalizing,
if there are h bad transmissions of di followed by a good one, the client average delay
for receiving item di becomes Nk

2 + hNk time units with probability qh(1 − q). Thus,
summing up over all h, the expected delay ti is equal to

∞∑

h=0

(
Nk

2
+ hNk)qh(1 − q) =

Nk

2
+ Nk

q

1 − q

because
∑∞

h=0 qh = 1
1−q

and
∑∞

h=0 hqh = q
(1−q)2 . Therefore, one can set the expected

delay as

ti =
Nk

2

1 + q

1 − q
(10)

By the above setting, the objective function to be minimized becomes

AED =

N∑

i=1

tipi =
1

2

1 + q

1 − q

K∑

k=1

NkPk (11)

Therefore, for items with unit lengths, the data allocation problem can be optimally
solved in polynomial time. This derives from Lemmas 1 and 2 of [5] which prove op-
timality in the particular case of error-free channels, that is, when q = 0. Indeed, when
q > 0, similar proofs hold once the cost Ci,j of assigning consecutive items di, . . . , dj

to the same channel is defined as Ci,j = j−i+1
2

1+q

1−q

∑j

h=i ph. In words, Lemmas 1 and
2 of [5] show that, whenever the items d1, d2, . . . , dN are sorted by non-increasing pop-
ularities, there always exists an optimal solution which is a segmentation and which can
be found by the Dichotomic algorithm.

2.2. Non-Unit Length Items

Consider now items with non-unit lengths and recall that Zk is the period of channel k.
In order to receive an item di of length zi over channel k, a client has to listen for zi

consecutive error-free packet transmissions, which happens with probability (1 − q)zi .
Hence, the failure probability for item di on channel k is Qzi

= 1 − (1 − q)zi .
In the case that the first transmission of di heard by the client is error-free, the client

has to wait on the average Zk

2 time units with probability 1−Qzi
. Instead, the client waits

on the average for Zk

2 + Zk time units with probability Qzi
(1−Qzi

) in the case that the
first transmission of di is erroneous and the second one is error-free. In general, h bad
transmissions of di followed by a good one lead to a delay of Zk

2 + hZk time units with



probability Qh
zi

(1 − Qzi
). Therefore, summing up over all h as seen in the unit length

case, the expected delay becomes

ti =
Zk

2

1 + Qzi

1 − Qzi

(12)

Thus, the average expected delay to be minimized is

AED =
1

2

K∑

k=1

(

Zk

∑

di∈Gk

1 + Qzi

1 − Qzi

pi

)

(13)

Recalling that the items are indexed by non-increasing pi

zi
ratios, the new recurrences

for the Dichotomic and Dlinear algorithms are derived from Recurrences 5 and 6, re-
spectively, once each Ci,j is defined as Ci,j = 1

2

(
∑j

h=i zh

)(
∑j

h=i

1+Qz
h

1−Qz
h

ph

)

. All
the Ci,j ’s can be computed in O(N) time via prefix-sums, once O(H) time is spent for
computing all the Qzh

’s, where H = min{N log z, z}. Therefore, the time complexi-
ties of the Dichotomic and Dlinear algorithms become, respectively, O(NK log N +H)
and O(N(K + log N) + H). Note that in such a case optimality is not guaranteed
since the problem is computationally intractable already for error-free channels. How-
ever, when there are only two channels, an optimal solution can be found in O(NZ)
time applying the Knapsack algorithm, simply replacing each popularity pi with p′i =
1+Qzi

1−Qzi

pi in Recurrence 7, and then finally selecting the entry MN,j which minimizes
1
2

(

jMN,j + (Z − j)(P ′ − MN,j)
)

, where P ′ =
∑N

i=1 p′i.
When there is only one channel, it has been shown in [19] that, in an optimal sched-

ule, replicas of any item di should be equally spaced with spacing

si =

(
N∑

h=1

√

phzh

1 + Qzh

1 − Qzh

)√

zi

pi

1 − Qzi

1 + Qzi

(14)

Thus, substituting ti = si

2 in Equation 1, the average expected delay becomes

AED =
1

2

(
N∑

i=1

√

pizi

1 + Qzi

1 − Qzi

)2

(15)

Therefore, the SRR algorithm can be applied once the decision rule Gi is modified as
Gi = (T − Ri)

2 pi

zi

1+Qzi

1−Qzi

.

2.3. Performance Evaluation

In this subsection, the behavior of the Dichotomic, Dlinear, and SRR heuristics is eval-
uated in the case of Bernoulli channel error model. The above algorithms have been ex-
perimentally tested on benchmarks where the item popularities follow a Zipf distribu-
tion. Specifically, given the number N of items and a real number 0 ≤ θ ≤ 1, the item
popularities are defined as
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pi =
(1/i)θ

∑N

h=1(1/h)θ
1 ≤ i ≤ N

In the above formula, θ is the skew parameter. In particular, θ = 0 stands for a uniform
distribution with pi = 1

N
, while a higher θ implies a higher skew, namely the difference

among the pi values becomes larger.
Consider first some experiments for multiple channels reported from [7], where

either the skew parameter θ is set to 0.8 as suggested in [22], N = 2500, and
10 ≤ K ≤ 500, or θ = 0.8, K = 50, and 500 ≤ N ≤ 2500, or 0 ≤ θ ≤ 1, N = 2500,
and K = 200. The item lengths zi are integers randomly generated according to a uni-
form distribution in the range 1 ≤ zi ≤ 10, for 1 ≤ i ≤ N . The channel failure proba-
bilities can assume the values 0.001 and 0.01.

Moreover, since the data allocation problem is computationally intractable when
items have non-unit lengths, lower bounds for a non-unit length instance are derived by
transforming it into a unit length instance as follows. Each item di of popularity pi and
length zi is decomposed into zi items of popularity pi

zi

and length 1. Since more freedom
has been introduced, it is clear that the optimal AED for the so transformed problem is a
lower bound on the AED of the original problem. Since the transformed problem has unit
lengths, the optimal AED can be obtained by running the polynomial time Dichotomic
algorithm both when all the channels are error-free or have the same failure probability.

Figures 2.3-5 show the experimental results for the Dichotomic and Dlinear algo-
rithms in the case that there are multiple channels, the items have non-unit lengths, and
the failure probability q is 0.001. One can note that the two above mentioned lower
bounds as well as the solutions provided by both algorithms almost coincide. Instead,
Figures 6-8 show the experimental results when the failure probability q is 0.01. Refer-
ring to Figures 6 and 7, where θ = 0.8, the AED of the transformed unit length instance
in the presence of errors is 1+q

1−q
= 1.02 times the AED of the same transformed instance

without errors. One can also note that, since the average item length is 5, the AED of the
original instance in the presence of errors should be about 1+Q

1−Q
= 1.10 times the AED of

the same original instance in the absence of errors, where Q = 1 − (1 − 0.01)5 = 0.05.
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This can be easily checked in Figure 6, e.g., for K = 10, where the ratio between the
two AEDs is about 500

450 = 1.11. Referring to Figure 8, where θ varies, one notes that the
ratio between such AEDs is almost 1.12 for every value of θ, confirming the results of
Figures 6 and 7.

Consider now some simulation experiments for a single channel, which are reported
from [19]. In the experiments, N = 1000, 0 ≤ θ ≤ 1, and each zi is an integer randomly
generated according to a uniform distribution in the range 1 ≤ zi ≤ 10, for 1 ≤ i ≤ N .
The channel failure probability q varies between 0 and 0.2. Figure 9 shows the behavior
of the SRR algorithm compared with the analytical lower bound given in Equation 15.
The experimental tests show that the AED values obtained by the SRR algorithm and by
the lower bound differ up to 3% for small values of q, and up to 10% for larger values of
q.
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3. Gilbert-Elliot Channel Error Model

In this section, the channel error behavior is assumed to follow a simplified Gilbert-Elliot
model, which is a two-state time-homogeneous discrete time Markov chain [20], as de-
scribed below. At each time instant, a channel can be in one of two states. The state 0
denotes the good state, where the channel works properly and thus a packet is received
with no errors. Instead, the state 1 denotes the bad state, where the channel is subject to
failure and hence a packet is received with an unrecoverable error. Let X0, X1, X2, . . .
be the states of the channel at times 0, 1, 2, . . .. The time between Xu and Xu+1 corre-
sponds to the length of one packet. The initial state X0 is selected randomly. As depicted
in Figure 10, the probability of transition from the good state to the bad one is denoted
by b, while that from the bad state to the good one is g. Hence, 1 − b and 1 − g are the
probabilities of remaining in the same state, namely, in the good and bad state, respec-
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Figure 10. The Gilbert-Elliot channel error model.

tively. Formally, Prob[Xu+1 = 0|Xu = 0] = 1 − b, Prob[Xu+1 = 0|Xu = 1] = g,
Prob[Xu+1 = 1|Xu = 1] = 1 − g, and Prob[Xu+1 = 1|Xu = 0] = b.

It is well known that the steady-state probability of being in the good state is PG =
g

b+g
, while that of being in the bad state is PB = b

b+g
. This Markovian process has



mean µ = PB , variance σ2 = µ(1 − µ) = bg

(b+g)2 , and autocorrelation function r(ν) =

PB +(1−PB)(1−b−g)ν, where b+g < 1 is assumed. Since the system is memoryless,
the state holding times are geometrically distributed. The mean state holding times for
the good state and the bad state are, respectively, 1

b
and 1

g
. This means that the channel

exhibits error bursts of consecutive ones whose mean length is 1
g

, separated by gaps of
consecutive zeros whose mean length is 1

b
.

3.1. Unit Length Items

Assume that the items have unit lengths, i.e., zi = 1 for 1 ≤ i ≤ N . Recall that in such
a case the period of channel k is Nk.

If a client waits for item di on channel k, and no error occurs in the first transmission
of di, then the client waits on the average Nk

2 time units with probability PG = 1 −
PB . Instead, if an error occurs during the first transmission of di and there is no error
in the second transmission, then the average delay experienced by the client is Nk

2 +
Nk time units with probability PB(1 − r(Nk)). In general, when there are h erroneous
transmissions of di followed by an error-free one, the client average delay is Nk

2 + hNk

time units with probability PB(r(Nk))h−1(1−r(Nk)). Thus, the expected delay is equal
to

Nk

2
PG + PB(1 − r(Nk))

∞∑

h=1

(
Nk

2
+ hNk)(r(Nk))h−1 =

Nk

2
PG + PB

Nk

2
+ PB

Nk

1 − r(Nk)

because
∑∞

h=1(r(Nk))h−1 = 1
1−r(Nk) and

∑∞
h=1 h(r(Nk))h−1 = 1

(1−r(Nk))2 . Hence,
the expected delay ti and the objective function AED become, respectively:

ti =
Nk

2

(

1 +
2PB

1 − r(Nk)

)

(16)

AED =
1

2

K∑

k=1

(

Nk

(

1 +
2PB

1 − r(Nk)

)
∑

di∈Gk

pi

)

(17)

It has been proved that, since all the items have unit length, there always exists an
optimal solution which is a segmentation. Moreover, such a solution can be found in
O(N2K) time by the DP algorithm, whose new recurrence is derived from Recurrence 4
by setting Ci,j = j−i+1

2

(

1 + 2PB

1−r(j−i+1)

)
∑j

h=i ph.

3.2. Non-Unit Length Items

This subsection deals with items of non-unit lengths. Recall that Zk is the period of
channel k and that a client has to listen for zi consecutive error-free packet transmissions
in order to receive the item di over channel k.



Consider now the first transmission of item di heard by a client. Let P̂B(s) denote
the probability that in such a transmission the s-th packet is the first erroneous packet,
where 1 ≤ s ≤ zi. Formally,

P̂B(s) =

{
PB

(1 − PB)(1 − b)s−2b
if s = 1
if 2 ≤ s ≤ zi

Consider now two consecutive transmissions of item di heard by a client, the first of
which is erroneous. Let P̄B(s, σ) denote the probability that, in the second transmission,
the first erroneous packet is the s-th one given that in the previous transmission the first
erroneous packet was the σ-th one. Thus, when s = 1, P̄B(1, σ) = r(Zk + 1 − σ),
whereas when 2 ≤ s ≤ zi:

P̄B(s, σ) = (1 − r(Zk + 1 − σ))(1 − b)s−2b

Finally, let P̄G(σ) denote the probability that a whole transmission of di is error-free
given that in the previous transmission of di the first erroneous packet was the σ-th one:

P̄G(σ) = (1 − r(Zk + 1 − σ))(1 − b)zi−1

Note that all the P̂B(s) and P̄B(s, σ)’s can be computed in pseudo-polynomial time, that
is in a time polynomial in the parameters Z and z.

To evaluate the expected delay ti, observe that if the first transmission of di

heard by the client is error-free, the client has to wait on the average Zk

2 time units
with probability (1 − PB)(1 − b)zi−1. Instead, the client waits on the average for
Zk

2 + Zk time units with probability
∑zi

s0=1 P̂B(s0)P̄G(s0) in the case that the first
transmission of di is erroneous and the second one is error-free. Moreover, two bad
transmissions of di followed by a good one lead to a delay of Zk

2 + 2Zk time

units with probability
∑zi

s0=1

[

P̂B(s0)
∑zi

s1=1 P̄B(s1, s0)P̄G(s1)
]

. Thus, in general,

the expected delay is ti = Zk

2 (1 − PB)(1 − b)zi−1 +
∑∞

h=1

[(
Zk

2 + hZk

) ∑zi

s0=1[

P̂B(s0)
∑zi

s1=1

[

P̄B(s1, s0) · · ·
∑zi

sh−1=1

[
P̄B(sh−1, sh−2)P̄G(sh−1)

]
· · ·
]]]

.
Since finding a closed formula for ti seems to be difficult, an approximation tm

i of
the expected delay can be computed by truncating the above series at the m-th term, for
a given constant value m. Indeed, experimental tests show that the series converges al-
ready for small values of m, as it will be checked in Subsection 3.3. Thus, the average ex-
pected delay becomes AED =

∑N

i=1 tmi pi. Recalling that the items are indexed by non-
increasing pi

zi
ratios, the Dichotomic and Dlinear algorithms can be applied once each

Ci,j is computed as
∑j

h=i tmh ph. Fixed i and j, the time for computing Ci,j is derived as
follows. Assuming a proper prefix-sum has been done in O(N) time as a preprocessing,
Zk =

∑j

h=i zh can be retrieved in O(1) time, while the computation of tm
h requires

O(zm
h ) time. Therefore, in the worst case, the computation of Ci,j takes O(Nzm) time,

and that of all the Ci,j ’s costs O(N3zm) time, which is pseudo-polynomial. Hence, the
time for computing the P̂B(s)’s, P̄B(s, σ)’s, and Ci,j ’s leads to a pseudo-polynomial
time complexity for both the Dichotomic and Dlinear algorithms.



 4

 4.5

 5

 5.5

 6

 0  20  40  60  80  100  120

A
E

D

Burst Length

N = 2500; K = 200

Dichotomic without error
DLinear without error

Dichotomic with PB=0.001
DLinear with PB=0.001

Dichotomic with PB=0.01
DLinear with PB=0.01

Dichotomic with PB=0.1
DLinear with PB=0.1
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3.3. Performance Evaluation

This subsection presents some experimental tests, taken from [7], for the Dichotomic
and Dlinear heuristics in the case of the Gilbert-Elliot channel error model (experiments
for the SRR heuristic are not available because it was studied only under the Bernoulli
channel error model [19]).

In the experiments, the steady-state probability PB of being in the bad state can
assume the values 0.001, 0.01, and 0.1, while the mean error burst length 1

g
is fixed to

10. Note that b is derived as g PB

1−PB

once PB and 1
g

are fixed. However, the choice of 1
g

is not critical because the sensitivity of the AED to 1
g

is low, as depicted in Figure 11, for
1 < 1

g
≤ 130. Note that the choice of such an upper bound for 1

g
is not restrictive because

the probability of having a burst with length n is g(1 − g)n−1, which is negligible as n
increases.

Since the algorithms take pseudo-polynomial time for items with non-unit lengths, a
restricted set of experiments is performed. In the experiments, the number K of channels
is set to 50, the number N of items varies between 500 and 2000, the item popularities
follow a Zipf distribution with θ = 0.8, and the item lengths zi are integers randomly
generated according to a uniform distribution in the range 1 ≤ zi ≤ 10, for 1 ≤ i ≤ N .
The expected delay of item di is evaluated by computing t5i , that is truncating at the fifth
term the series giving ti. Indeed, as shown in Table 1 for zi = 10, Zk = 50, 1

g
= 10, and

PB = 0.01 and for zi = 5, Zk = 50, 1
g

= 10, and PB = 0.1, at the fifth term the series
giving ti is already stabilized up to the fourth decimal digit.

Since the data allocation problem is computationally intractable when items have
non-unit lengths, lower bounds for non-unit length instances are derived by transforming
them into unit length instances, as explained in Subsection 2.3, and by running the DP al-
gorithm. In particular, the AEDs giving the lower bounds are obtained from Equation 17.

Figure 12 shows the experimental results for non-unit lengths when PB , which is
identical for all channels, assumes the values 0.001, 0.01, and 0.1. In such a figure,
lower bounds are shown for both error-free and error-prone channels. One notes that,
for every value of PB , the behavior of both the Dichotomic and Dlinear algorithms is



Table 1. Values of tmi when: (a) zi = 10, Zk = 50, 1

g
= 10, and PB = 0.01; and (b) zi = 5, Zk = 50,

1

g
= 10, and PB = 0.16.

m tmi

1 25.9150699
2 25.9382262
3 25.9388013
4 25.9388156
5 25.9388160
6 25.9388167

m tmi

1 25.1989377
2 25.2537833
3 25.2689036
4 25.2730723
5 25.2745215
6 25.2745384
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Figure 12. Results for N items with non-unit lengths, when θ = 0.8 and the 50 channels have the same
steady-state probability PB , which assumes the values 0.001, 0.01, and 0.1.

identical. When PB = 0.001, both algorithms provide optimal solutions because their
AEDs almost coincide with the lower bound for channels without errors. When PB =
0.01, the AEDs of both the Dichotomic and Dlinear algorithms are 12% larger than the
lower bound in presence of errors. In the last case, namely PB = 0.1, the AEDs found
by the algorithms are as large as twice those of the lower bound in presence of errors.
However, such a value of PB represents an extremal case which should not arise in
practice (e.g. see [12]).

4. Conclusions

This paper considered the problem of allocating data to multiple channels, assuming flat
data scheduling per channel and the presence of unrecoverable channel transmission er-
rors so as to minimize the average expected delay experienced by the clients. The be-
havior of some heuristics has been experimentally evaluated when modelling the chan-
nel error by means of the Bernoulli model as well as the simplified Gilbert-Elliot one.



Extensive simulations showed that such heuristics give good sub-optimal solutions when
tested on benchmarks whose item popularities follow Zipf distributions. In particular, for
small channel error probabilities, the average expected delay of the proposed solutions
is almost the same as the optimal one found in the case of channels without errors. It is
worth noting that, since the problem is computationally intractable (that is, NP -hard)
for non-unit lengths and error-free channels, it remains intractable also in the presence
of errors for non-unit lengths, while it can be polynomially solved for unit-lengths. As
regard to the non-unit length case, an interesting open question is that of determining
whether a closed formula for computing the item expected delays exists or not when the
Gilbert-Elliot model is adopted. Moreover, an interesting extension of the problem to be
investigated is that considering channels which do not have the same error probabilities.
Some preliminary results on such an extension are reported in [7].
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